High-performance piezoelectric flexible materials enabled by hierarchically porous graphite for bone tissue regeneration

Detalhes bibliográficos
Autor(a) principal: Rodrigues, Mariana Galhós
Data de Publicação: 2022
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/36247
Resumo: Piezoelectricity has been recognised as a crucial regulator of essential bone metabolic activities, including growth, remodelling, and defect repair. The intrinsic electrophysiological properties of bone are oftentimes overlooked when designing scaffolds to regenerate this tissue. Some metallic oxides with a perovskite structure, like barium titanate, have outstanding piezoelectric performance and can be used to stimulate bone regeneration by being implemented in a flexible polymeric composite. Nonetheless, due to the much lower dielectric constant of the polymer, in comparison to the ceramic, a conductive filler is added to the ceramic to ensure the correct polarization of the barium titanate particles. Conducive carbon nanoparticles can be used to correct the dielectric differences, although the insufficient contact between the piezoelectric component cannot be rectified. Thereby the implementation of recently designed highly porous three-dimensional graphite foams can be a viable opportunity to have electroactive bone regeneration, incorporating an innovative nanostructure composed of a three-dimensional graphite foam with barium titanate nanoparticles in a chitosan/nanohydroxyapatite supportive structure prepared by freeze-drying. Barium titanate nanoparticles with high tetragonality (~99%) were successfully synthesised through hydrothermal synthesis at mild temperatures (200 °C). The effect of the reaction time and synthesis method was characterised by X-ray diffraction, Raman spectroscopy and Scanning electron microscopy. Dispersions of these particles were done in water and evaluated with zeta potential. The impregnation of these dispersions onto the three-dimensional graphite foam was done via voltage-assistance, which improved impregnation flux, as seen in the micrographs. This method was further characterised by X-ray diffraction and Atomic Force Microscopy. The construct was then fitted into a porous chitosan structure and prepared through freeze-drying to act as a scaffold for bone regeneration. The characterization of the chitosan-based scaffolds with and without nanohydroxyapatite found good porosity (~80-90%), tuneable mechanical properties, biomineralization, degradation profile and good cell viability. Piezoresponse tests were done at local (d₃₃ = 12 pC/V) and macroscale (d₃₃ = ~5 pC/N) with piezoresponse force microscopy and a d₃₃-meter, respectively. Voltage and current were also measured at the macroscale. The new design developed for piezoelectric bone scaffolds reveals a promising perspective for the active regeneration of bone tissue.
id RCAP_02e50fc7d8d8b5464af7821243719319
oai_identifier_str oai:ria.ua.pt:10773/36247
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling High-performance piezoelectric flexible materials enabled by hierarchically porous graphite for bone tissue regenerationPiezoelectricityBone regenerationBarium titanateThree-dimensional graphiteChitosanHydroxyapatiteHydrothermal synthesisScaffoldPiezoelectricity has been recognised as a crucial regulator of essential bone metabolic activities, including growth, remodelling, and defect repair. The intrinsic electrophysiological properties of bone are oftentimes overlooked when designing scaffolds to regenerate this tissue. Some metallic oxides with a perovskite structure, like barium titanate, have outstanding piezoelectric performance and can be used to stimulate bone regeneration by being implemented in a flexible polymeric composite. Nonetheless, due to the much lower dielectric constant of the polymer, in comparison to the ceramic, a conductive filler is added to the ceramic to ensure the correct polarization of the barium titanate particles. Conducive carbon nanoparticles can be used to correct the dielectric differences, although the insufficient contact between the piezoelectric component cannot be rectified. Thereby the implementation of recently designed highly porous three-dimensional graphite foams can be a viable opportunity to have electroactive bone regeneration, incorporating an innovative nanostructure composed of a three-dimensional graphite foam with barium titanate nanoparticles in a chitosan/nanohydroxyapatite supportive structure prepared by freeze-drying. Barium titanate nanoparticles with high tetragonality (~99%) were successfully synthesised through hydrothermal synthesis at mild temperatures (200 °C). The effect of the reaction time and synthesis method was characterised by X-ray diffraction, Raman spectroscopy and Scanning electron microscopy. Dispersions of these particles were done in water and evaluated with zeta potential. The impregnation of these dispersions onto the three-dimensional graphite foam was done via voltage-assistance, which improved impregnation flux, as seen in the micrographs. This method was further characterised by X-ray diffraction and Atomic Force Microscopy. The construct was then fitted into a porous chitosan structure and prepared through freeze-drying to act as a scaffold for bone regeneration. The characterization of the chitosan-based scaffolds with and without nanohydroxyapatite found good porosity (~80-90%), tuneable mechanical properties, biomineralization, degradation profile and good cell viability. Piezoresponse tests were done at local (d₃₃ = 12 pC/V) and macroscale (d₃₃ = ~5 pC/N) with piezoresponse force microscopy and a d₃₃-meter, respectively. Voltage and current were also measured at the macroscale. The new design developed for piezoelectric bone scaffolds reveals a promising perspective for the active regeneration of bone tissue.A piezoeletricidade tem sido reconhecida como um regulador crucial de atividades metabólicas ósseas essenciais, como o crescimento, a remodelação e a reparação de defeitos. As propriedades eletrofisiológicas intrínsecas do osso são muitas vezes negligenciadas aquando da conceção de estruturas de suporte (scaffolds) para a regeneração deste tecido. Alguns dos óxidos metálicos com estrutura perovsquítica, como o titanato de bário, apresentam um excelente desempenho piezoelétrico, podendo ser utilizados para estimular a regeneração óssea por integração em compósitos de matriz polimérica flexível. No entanto, como a constante dielétrica do polímero é em geral muito mais baixa do que a da fase cerâmica, de forma a garantir a fácil polarização das partículas de titanato de bário, é feita a adição de uma fase condutora ao polímero. Uma opção é a adição de estruturas carbonáceas, embora seja difícil conseguir a percolação necessária entre as partículas. Neste sentido, a utilização de espumas de grafite tridimensionais, altamente porosas, recentemente concebidas, podem ser uma oportunidade de regeneração óssea eletroactiva, incorporando uma nanoestrutura inovadora composta por uma espuma tridimensional de grafite com nanopartículas de titanato de bário numa estrutura suporte de quitosana/nanohidroxiapatite fabricada por liofilização. As nanopartículas de titanato de bário com elevada tetragonalidade (~99%) foram sintetizadas com sucesso através de síntese hidrotermal a temperaturas relativamente baixas (200 °C). O efeito do tempo de reação e do método de síntese foi caracterizado por difração de raios-X, espectroscopia Raman e microscopia eletrónica de varrimento. As dispersões destas partículas foram feitas em água e avaliadas com potencial zeta. A impregnação destas dispersões na espuma tridimensional de grafite foi feita com o auxílio da aplicação de tensão. Este método foi ainda caracterizado por difração de raios X e microscopia de força atómica. A estrutura de grafite impregnada com nanopartículas de titanato de bário foi introduzida na solução de quitosana com partículas de nanohidroxiapatite, sendo depois congelada e liofilizada para o desenvolvimento do scaffold para atuar na regeneração óssea. A caraterização dos scaffolds à base de quitosana com e sem nanohidroxiapatite encontrou uma boa porosidade (~80-90%), propriedades mecânicas, biomineralização e perfil de degradação ajustáveis e uma boa viabilidade celular. Os ensaios de resposta piezoelétrica foram feitos localmente (d₃₃ = 12 pC/V) e macroscopicamente (d₃₃ = ~5 pC/N) utilizando a microscopia de resposta de força piezoelétrica e um medidor do coeficiente d₃₃, respetivamente. A tensão e corrente foram também medidas à escala macroscópica. O novo compósito desenvolvido para scaffolds ósseos piezoelétricos revela uma perspetiva promissora para a regeneração ativa do tecido ósseo.2024-10-31T00:00:00Z2022-10-31T00:00:00Z2022-10-31info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/36247engRodrigues, Mariana Galhósinfo:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:09:57Zoai:ria.ua.pt:10773/36247Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:07:08.030490Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv High-performance piezoelectric flexible materials enabled by hierarchically porous graphite for bone tissue regeneration
title High-performance piezoelectric flexible materials enabled by hierarchically porous graphite for bone tissue regeneration
spellingShingle High-performance piezoelectric flexible materials enabled by hierarchically porous graphite for bone tissue regeneration
Rodrigues, Mariana Galhós
Piezoelectricity
Bone regeneration
Barium titanate
Three-dimensional graphite
Chitosan
Hydroxyapatite
Hydrothermal synthesis
Scaffold
title_short High-performance piezoelectric flexible materials enabled by hierarchically porous graphite for bone tissue regeneration
title_full High-performance piezoelectric flexible materials enabled by hierarchically porous graphite for bone tissue regeneration
title_fullStr High-performance piezoelectric flexible materials enabled by hierarchically porous graphite for bone tissue regeneration
title_full_unstemmed High-performance piezoelectric flexible materials enabled by hierarchically porous graphite for bone tissue regeneration
title_sort High-performance piezoelectric flexible materials enabled by hierarchically porous graphite for bone tissue regeneration
author Rodrigues, Mariana Galhós
author_facet Rodrigues, Mariana Galhós
author_role author
dc.contributor.author.fl_str_mv Rodrigues, Mariana Galhós
dc.subject.por.fl_str_mv Piezoelectricity
Bone regeneration
Barium titanate
Three-dimensional graphite
Chitosan
Hydroxyapatite
Hydrothermal synthesis
Scaffold
topic Piezoelectricity
Bone regeneration
Barium titanate
Three-dimensional graphite
Chitosan
Hydroxyapatite
Hydrothermal synthesis
Scaffold
description Piezoelectricity has been recognised as a crucial regulator of essential bone metabolic activities, including growth, remodelling, and defect repair. The intrinsic electrophysiological properties of bone are oftentimes overlooked when designing scaffolds to regenerate this tissue. Some metallic oxides with a perovskite structure, like barium titanate, have outstanding piezoelectric performance and can be used to stimulate bone regeneration by being implemented in a flexible polymeric composite. Nonetheless, due to the much lower dielectric constant of the polymer, in comparison to the ceramic, a conductive filler is added to the ceramic to ensure the correct polarization of the barium titanate particles. Conducive carbon nanoparticles can be used to correct the dielectric differences, although the insufficient contact between the piezoelectric component cannot be rectified. Thereby the implementation of recently designed highly porous three-dimensional graphite foams can be a viable opportunity to have electroactive bone regeneration, incorporating an innovative nanostructure composed of a three-dimensional graphite foam with barium titanate nanoparticles in a chitosan/nanohydroxyapatite supportive structure prepared by freeze-drying. Barium titanate nanoparticles with high tetragonality (~99%) were successfully synthesised through hydrothermal synthesis at mild temperatures (200 °C). The effect of the reaction time and synthesis method was characterised by X-ray diffraction, Raman spectroscopy and Scanning electron microscopy. Dispersions of these particles were done in water and evaluated with zeta potential. The impregnation of these dispersions onto the three-dimensional graphite foam was done via voltage-assistance, which improved impregnation flux, as seen in the micrographs. This method was further characterised by X-ray diffraction and Atomic Force Microscopy. The construct was then fitted into a porous chitosan structure and prepared through freeze-drying to act as a scaffold for bone regeneration. The characterization of the chitosan-based scaffolds with and without nanohydroxyapatite found good porosity (~80-90%), tuneable mechanical properties, biomineralization, degradation profile and good cell viability. Piezoresponse tests were done at local (d₃₃ = 12 pC/V) and macroscale (d₃₃ = ~5 pC/N) with piezoresponse force microscopy and a d₃₃-meter, respectively. Voltage and current were also measured at the macroscale. The new design developed for piezoelectric bone scaffolds reveals a promising perspective for the active regeneration of bone tissue.
publishDate 2022
dc.date.none.fl_str_mv 2022-10-31T00:00:00Z
2022-10-31
2024-10-31T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/36247
url http://hdl.handle.net/10773/36247
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137726575935488