High-performance piezoelectric flexible materials enabled by hierarchically porous graphite for bone tissue regeneration
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/36247 |
Resumo: | Piezoelectricity has been recognised as a crucial regulator of essential bone metabolic activities, including growth, remodelling, and defect repair. The intrinsic electrophysiological properties of bone are oftentimes overlooked when designing scaffolds to regenerate this tissue. Some metallic oxides with a perovskite structure, like barium titanate, have outstanding piezoelectric performance and can be used to stimulate bone regeneration by being implemented in a flexible polymeric composite. Nonetheless, due to the much lower dielectric constant of the polymer, in comparison to the ceramic, a conductive filler is added to the ceramic to ensure the correct polarization of the barium titanate particles. Conducive carbon nanoparticles can be used to correct the dielectric differences, although the insufficient contact between the piezoelectric component cannot be rectified. Thereby the implementation of recently designed highly porous three-dimensional graphite foams can be a viable opportunity to have electroactive bone regeneration, incorporating an innovative nanostructure composed of a three-dimensional graphite foam with barium titanate nanoparticles in a chitosan/nanohydroxyapatite supportive structure prepared by freeze-drying. Barium titanate nanoparticles with high tetragonality (~99%) were successfully synthesised through hydrothermal synthesis at mild temperatures (200 °C). The effect of the reaction time and synthesis method was characterised by X-ray diffraction, Raman spectroscopy and Scanning electron microscopy. Dispersions of these particles were done in water and evaluated with zeta potential. The impregnation of these dispersions onto the three-dimensional graphite foam was done via voltage-assistance, which improved impregnation flux, as seen in the micrographs. This method was further characterised by X-ray diffraction and Atomic Force Microscopy. The construct was then fitted into a porous chitosan structure and prepared through freeze-drying to act as a scaffold for bone regeneration. The characterization of the chitosan-based scaffolds with and without nanohydroxyapatite found good porosity (~80-90%), tuneable mechanical properties, biomineralization, degradation profile and good cell viability. Piezoresponse tests were done at local (d₃₃ = 12 pC/V) and macroscale (d₃₃ = ~5 pC/N) with piezoresponse force microscopy and a d₃₃-meter, respectively. Voltage and current were also measured at the macroscale. The new design developed for piezoelectric bone scaffolds reveals a promising perspective for the active regeneration of bone tissue. |
id |
RCAP_02e50fc7d8d8b5464af7821243719319 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/36247 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
High-performance piezoelectric flexible materials enabled by hierarchically porous graphite for bone tissue regenerationPiezoelectricityBone regenerationBarium titanateThree-dimensional graphiteChitosanHydroxyapatiteHydrothermal synthesisScaffoldPiezoelectricity has been recognised as a crucial regulator of essential bone metabolic activities, including growth, remodelling, and defect repair. The intrinsic electrophysiological properties of bone are oftentimes overlooked when designing scaffolds to regenerate this tissue. Some metallic oxides with a perovskite structure, like barium titanate, have outstanding piezoelectric performance and can be used to stimulate bone regeneration by being implemented in a flexible polymeric composite. Nonetheless, due to the much lower dielectric constant of the polymer, in comparison to the ceramic, a conductive filler is added to the ceramic to ensure the correct polarization of the barium titanate particles. Conducive carbon nanoparticles can be used to correct the dielectric differences, although the insufficient contact between the piezoelectric component cannot be rectified. Thereby the implementation of recently designed highly porous three-dimensional graphite foams can be a viable opportunity to have electroactive bone regeneration, incorporating an innovative nanostructure composed of a three-dimensional graphite foam with barium titanate nanoparticles in a chitosan/nanohydroxyapatite supportive structure prepared by freeze-drying. Barium titanate nanoparticles with high tetragonality (~99%) were successfully synthesised through hydrothermal synthesis at mild temperatures (200 °C). The effect of the reaction time and synthesis method was characterised by X-ray diffraction, Raman spectroscopy and Scanning electron microscopy. Dispersions of these particles were done in water and evaluated with zeta potential. The impregnation of these dispersions onto the three-dimensional graphite foam was done via voltage-assistance, which improved impregnation flux, as seen in the micrographs. This method was further characterised by X-ray diffraction and Atomic Force Microscopy. The construct was then fitted into a porous chitosan structure and prepared through freeze-drying to act as a scaffold for bone regeneration. The characterization of the chitosan-based scaffolds with and without nanohydroxyapatite found good porosity (~80-90%), tuneable mechanical properties, biomineralization, degradation profile and good cell viability. Piezoresponse tests were done at local (d₃₃ = 12 pC/V) and macroscale (d₃₃ = ~5 pC/N) with piezoresponse force microscopy and a d₃₃-meter, respectively. Voltage and current were also measured at the macroscale. The new design developed for piezoelectric bone scaffolds reveals a promising perspective for the active regeneration of bone tissue.A piezoeletricidade tem sido reconhecida como um regulador crucial de atividades metabólicas ósseas essenciais, como o crescimento, a remodelação e a reparação de defeitos. As propriedades eletrofisiológicas intrínsecas do osso são muitas vezes negligenciadas aquando da conceção de estruturas de suporte (scaffolds) para a regeneração deste tecido. Alguns dos óxidos metálicos com estrutura perovsquítica, como o titanato de bário, apresentam um excelente desempenho piezoelétrico, podendo ser utilizados para estimular a regeneração óssea por integração em compósitos de matriz polimérica flexível. No entanto, como a constante dielétrica do polímero é em geral muito mais baixa do que a da fase cerâmica, de forma a garantir a fácil polarização das partículas de titanato de bário, é feita a adição de uma fase condutora ao polímero. Uma opção é a adição de estruturas carbonáceas, embora seja difícil conseguir a percolação necessária entre as partículas. Neste sentido, a utilização de espumas de grafite tridimensionais, altamente porosas, recentemente concebidas, podem ser uma oportunidade de regeneração óssea eletroactiva, incorporando uma nanoestrutura inovadora composta por uma espuma tridimensional de grafite com nanopartículas de titanato de bário numa estrutura suporte de quitosana/nanohidroxiapatite fabricada por liofilização. As nanopartículas de titanato de bário com elevada tetragonalidade (~99%) foram sintetizadas com sucesso através de síntese hidrotermal a temperaturas relativamente baixas (200 °C). O efeito do tempo de reação e do método de síntese foi caracterizado por difração de raios-X, espectroscopia Raman e microscopia eletrónica de varrimento. As dispersões destas partículas foram feitas em água e avaliadas com potencial zeta. A impregnação destas dispersões na espuma tridimensional de grafite foi feita com o auxílio da aplicação de tensão. Este método foi ainda caracterizado por difração de raios X e microscopia de força atómica. A estrutura de grafite impregnada com nanopartículas de titanato de bário foi introduzida na solução de quitosana com partículas de nanohidroxiapatite, sendo depois congelada e liofilizada para o desenvolvimento do scaffold para atuar na regeneração óssea. A caraterização dos scaffolds à base de quitosana com e sem nanohidroxiapatite encontrou uma boa porosidade (~80-90%), propriedades mecânicas, biomineralização e perfil de degradação ajustáveis e uma boa viabilidade celular. Os ensaios de resposta piezoelétrica foram feitos localmente (d₃₃ = 12 pC/V) e macroscopicamente (d₃₃ = ~5 pC/N) utilizando a microscopia de resposta de força piezoelétrica e um medidor do coeficiente d₃₃, respetivamente. A tensão e corrente foram também medidas à escala macroscópica. O novo compósito desenvolvido para scaffolds ósseos piezoelétricos revela uma perspetiva promissora para a regeneração ativa do tecido ósseo.2024-10-31T00:00:00Z2022-10-31T00:00:00Z2022-10-31info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/36247engRodrigues, Mariana Galhósinfo:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:09:57Zoai:ria.ua.pt:10773/36247Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:07:08.030490Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
High-performance piezoelectric flexible materials enabled by hierarchically porous graphite for bone tissue regeneration |
title |
High-performance piezoelectric flexible materials enabled by hierarchically porous graphite for bone tissue regeneration |
spellingShingle |
High-performance piezoelectric flexible materials enabled by hierarchically porous graphite for bone tissue regeneration Rodrigues, Mariana Galhós Piezoelectricity Bone regeneration Barium titanate Three-dimensional graphite Chitosan Hydroxyapatite Hydrothermal synthesis Scaffold |
title_short |
High-performance piezoelectric flexible materials enabled by hierarchically porous graphite for bone tissue regeneration |
title_full |
High-performance piezoelectric flexible materials enabled by hierarchically porous graphite for bone tissue regeneration |
title_fullStr |
High-performance piezoelectric flexible materials enabled by hierarchically porous graphite for bone tissue regeneration |
title_full_unstemmed |
High-performance piezoelectric flexible materials enabled by hierarchically porous graphite for bone tissue regeneration |
title_sort |
High-performance piezoelectric flexible materials enabled by hierarchically porous graphite for bone tissue regeneration |
author |
Rodrigues, Mariana Galhós |
author_facet |
Rodrigues, Mariana Galhós |
author_role |
author |
dc.contributor.author.fl_str_mv |
Rodrigues, Mariana Galhós |
dc.subject.por.fl_str_mv |
Piezoelectricity Bone regeneration Barium titanate Three-dimensional graphite Chitosan Hydroxyapatite Hydrothermal synthesis Scaffold |
topic |
Piezoelectricity Bone regeneration Barium titanate Three-dimensional graphite Chitosan Hydroxyapatite Hydrothermal synthesis Scaffold |
description |
Piezoelectricity has been recognised as a crucial regulator of essential bone metabolic activities, including growth, remodelling, and defect repair. The intrinsic electrophysiological properties of bone are oftentimes overlooked when designing scaffolds to regenerate this tissue. Some metallic oxides with a perovskite structure, like barium titanate, have outstanding piezoelectric performance and can be used to stimulate bone regeneration by being implemented in a flexible polymeric composite. Nonetheless, due to the much lower dielectric constant of the polymer, in comparison to the ceramic, a conductive filler is added to the ceramic to ensure the correct polarization of the barium titanate particles. Conducive carbon nanoparticles can be used to correct the dielectric differences, although the insufficient contact between the piezoelectric component cannot be rectified. Thereby the implementation of recently designed highly porous three-dimensional graphite foams can be a viable opportunity to have electroactive bone regeneration, incorporating an innovative nanostructure composed of a three-dimensional graphite foam with barium titanate nanoparticles in a chitosan/nanohydroxyapatite supportive structure prepared by freeze-drying. Barium titanate nanoparticles with high tetragonality (~99%) were successfully synthesised through hydrothermal synthesis at mild temperatures (200 °C). The effect of the reaction time and synthesis method was characterised by X-ray diffraction, Raman spectroscopy and Scanning electron microscopy. Dispersions of these particles were done in water and evaluated with zeta potential. The impregnation of these dispersions onto the three-dimensional graphite foam was done via voltage-assistance, which improved impregnation flux, as seen in the micrographs. This method was further characterised by X-ray diffraction and Atomic Force Microscopy. The construct was then fitted into a porous chitosan structure and prepared through freeze-drying to act as a scaffold for bone regeneration. The characterization of the chitosan-based scaffolds with and without nanohydroxyapatite found good porosity (~80-90%), tuneable mechanical properties, biomineralization, degradation profile and good cell viability. Piezoresponse tests were done at local (d₃₃ = 12 pC/V) and macroscale (d₃₃ = ~5 pC/N) with piezoresponse force microscopy and a d₃₃-meter, respectively. Voltage and current were also measured at the macroscale. The new design developed for piezoelectric bone scaffolds reveals a promising perspective for the active regeneration of bone tissue. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-10-31T00:00:00Z 2022-10-31 2024-10-31T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/36247 |
url |
http://hdl.handle.net/10773/36247 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
eu_rights_str_mv |
embargoedAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137726575935488 |