Protection of growth and photosynthesis of Brassica juncea genotype with dual type sulfur transport system against sulfur deprivation by coordinate changes in the activities of sulfur metabolism enzymes and cysteine and glutathione production

Detalhes bibliográficos
Autor(a) principal: Anjum, N. A.
Data de Publicação: 2011
Outros Autores: Umar, S., Iqbal, M., Ahmad, I., Pereira, M. E., Khan, N. A.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/25597
Resumo: Mustard (Brassica juncea L. Czern and Coss.) cvs. Pusa Jai Kisan (with low-affinity S transporter (LAT) system) and Pusa Bold (with dual, low- and high-affinity transporters (LAT + HAT) system) were supplied with 0 or 1 mM S in hydroponics culture, and the coordinate changes in growth traits (plant dry weight and leaf area), photosynthetic traits (photosynthetic rate, intercellular CO2, F v/F m, and chlorophyll content), activities of key enzymes of sulfur metabolism, such as ATP-sulfurylase (ATP-S), serine acetyltransferase (SAT), and glutathione reductase (GR), and the contents of cysteine (Cys) and glutathione (GSH) were studied in 30 days after sowing. The results showed that cv. Pusa Jai Kisan was more sensitive to S deprivation than cv. Pusa Bold. In cv. Pusa Jai Kisan, S deprivation resulted in a stronger decrease of plant growth and photosynthetic traits, Cys and GSH contents, and a notable decline in activity of ATP-S. S deprivation up-regulated GR activity to a greater extent in cv. Pusa Bold. In contrast, despite the activity of SAT, an enzyme involved in the final step of Cys biosynthesis, was increased in cv. Pusa Jai Kisan stronger than in cv. Pusa Bold under S-deprivation, it could not be translated into the increase in Cys and, thus, GSH contents and a consequent improvement in growth and photosynthesis. The study demonstrated that cv. Pusa Bold (with LAT + HAT) can be a promising cultivar for activation of Cys and/or GSH biosyntheses and increased plant tolerance to S-deprivation conditions.
id RCAP_033c7f729df3363982c24c66234379aa
oai_identifier_str oai:ria.ua.pt:10773/25597
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Protection of growth and photosynthesis of Brassica juncea genotype with dual type sulfur transport system against sulfur deprivation by coordinate changes in the activities of sulfur metabolism enzymes and cysteine and glutathione productionBrassica juncea ATP-sulfurylase serine acetyltransferase glutathione reductase cysteine glutathione photosynthesis sulfur deprivation sulfur transporters Mustard (Brassica juncea L. Czern and Coss.) cvs. Pusa Jai Kisan (with low-affinity S transporter (LAT) system) and Pusa Bold (with dual, low- and high-affinity transporters (LAT + HAT) system) were supplied with 0 or 1 mM S in hydroponics culture, and the coordinate changes in growth traits (plant dry weight and leaf area), photosynthetic traits (photosynthetic rate, intercellular CO2, F v/F m, and chlorophyll content), activities of key enzymes of sulfur metabolism, such as ATP-sulfurylase (ATP-S), serine acetyltransferase (SAT), and glutathione reductase (GR), and the contents of cysteine (Cys) and glutathione (GSH) were studied in 30 days after sowing. The results showed that cv. Pusa Jai Kisan was more sensitive to S deprivation than cv. Pusa Bold. In cv. Pusa Jai Kisan, S deprivation resulted in a stronger decrease of plant growth and photosynthetic traits, Cys and GSH contents, and a notable decline in activity of ATP-S. S deprivation up-regulated GR activity to a greater extent in cv. Pusa Bold. In contrast, despite the activity of SAT, an enzyme involved in the final step of Cys biosynthesis, was increased in cv. Pusa Jai Kisan stronger than in cv. Pusa Bold under S-deprivation, it could not be translated into the increase in Cys and, thus, GSH contents and a consequent improvement in growth and photosynthesis. The study demonstrated that cv. Pusa Bold (with LAT + HAT) can be a promising cultivar for activation of Cys and/or GSH biosyntheses and increased plant tolerance to S-deprivation conditions.MAIK Nauka/Interperiodica2019-03-15T14:30:16Z2011-01-01T00:00:00Z2011info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/25597eng1021-443710.1134/S1021443711050025Anjum, N. A.Umar, S.Iqbal, M.Ahmad, I.Pereira, M. E.Khan, N. A.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:48:14Zoai:ria.ua.pt:10773/25597Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:58:15.075179Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Protection of growth and photosynthesis of Brassica juncea genotype with dual type sulfur transport system against sulfur deprivation by coordinate changes in the activities of sulfur metabolism enzymes and cysteine and glutathione production
title Protection of growth and photosynthesis of Brassica juncea genotype with dual type sulfur transport system against sulfur deprivation by coordinate changes in the activities of sulfur metabolism enzymes and cysteine and glutathione production
spellingShingle Protection of growth and photosynthesis of Brassica juncea genotype with dual type sulfur transport system against sulfur deprivation by coordinate changes in the activities of sulfur metabolism enzymes and cysteine and glutathione production
Anjum, N. A.
Brassica juncea 
ATP-sulfurylase 
serine acetyltransferase 
glutathione reductase 
cysteine glutathione 
photosynthesis
 sulfur deprivation
 sulfur transporters 
title_short Protection of growth and photosynthesis of Brassica juncea genotype with dual type sulfur transport system against sulfur deprivation by coordinate changes in the activities of sulfur metabolism enzymes and cysteine and glutathione production
title_full Protection of growth and photosynthesis of Brassica juncea genotype with dual type sulfur transport system against sulfur deprivation by coordinate changes in the activities of sulfur metabolism enzymes and cysteine and glutathione production
title_fullStr Protection of growth and photosynthesis of Brassica juncea genotype with dual type sulfur transport system against sulfur deprivation by coordinate changes in the activities of sulfur metabolism enzymes and cysteine and glutathione production
title_full_unstemmed Protection of growth and photosynthesis of Brassica juncea genotype with dual type sulfur transport system against sulfur deprivation by coordinate changes in the activities of sulfur metabolism enzymes and cysteine and glutathione production
title_sort Protection of growth and photosynthesis of Brassica juncea genotype with dual type sulfur transport system against sulfur deprivation by coordinate changes in the activities of sulfur metabolism enzymes and cysteine and glutathione production
author Anjum, N. A.
author_facet Anjum, N. A.
Umar, S.
Iqbal, M.
Ahmad, I.
Pereira, M. E.
Khan, N. A.
author_role author
author2 Umar, S.
Iqbal, M.
Ahmad, I.
Pereira, M. E.
Khan, N. A.
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Anjum, N. A.
Umar, S.
Iqbal, M.
Ahmad, I.
Pereira, M. E.
Khan, N. A.
dc.subject.por.fl_str_mv Brassica juncea 
ATP-sulfurylase 
serine acetyltransferase 
glutathione reductase 
cysteine glutathione 
photosynthesis
 sulfur deprivation
 sulfur transporters 
topic Brassica juncea 
ATP-sulfurylase 
serine acetyltransferase 
glutathione reductase 
cysteine glutathione 
photosynthesis
 sulfur deprivation
 sulfur transporters 
description Mustard (Brassica juncea L. Czern and Coss.) cvs. Pusa Jai Kisan (with low-affinity S transporter (LAT) system) and Pusa Bold (with dual, low- and high-affinity transporters (LAT + HAT) system) were supplied with 0 or 1 mM S in hydroponics culture, and the coordinate changes in growth traits (plant dry weight and leaf area), photosynthetic traits (photosynthetic rate, intercellular CO2, F v/F m, and chlorophyll content), activities of key enzymes of sulfur metabolism, such as ATP-sulfurylase (ATP-S), serine acetyltransferase (SAT), and glutathione reductase (GR), and the contents of cysteine (Cys) and glutathione (GSH) were studied in 30 days after sowing. The results showed that cv. Pusa Jai Kisan was more sensitive to S deprivation than cv. Pusa Bold. In cv. Pusa Jai Kisan, S deprivation resulted in a stronger decrease of plant growth and photosynthetic traits, Cys and GSH contents, and a notable decline in activity of ATP-S. S deprivation up-regulated GR activity to a greater extent in cv. Pusa Bold. In contrast, despite the activity of SAT, an enzyme involved in the final step of Cys biosynthesis, was increased in cv. Pusa Jai Kisan stronger than in cv. Pusa Bold under S-deprivation, it could not be translated into the increase in Cys and, thus, GSH contents and a consequent improvement in growth and photosynthesis. The study demonstrated that cv. Pusa Bold (with LAT + HAT) can be a promising cultivar for activation of Cys and/or GSH biosyntheses and increased plant tolerance to S-deprivation conditions.
publishDate 2011
dc.date.none.fl_str_mv 2011-01-01T00:00:00Z
2011
2019-03-15T14:30:16Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/25597
url http://hdl.handle.net/10773/25597
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1021-4437
10.1134/S1021443711050025
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv MAIK Nauka/Interperiodica
publisher.none.fl_str_mv MAIK Nauka/Interperiodica
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137636456071168