A Computer-Aided Drug Design Approach to Predict Marine Drug-Like Leads for SARS-CoV-2 Main Protease Inhibition
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/109143 |
Resumo: | UIDB/50006/2020 UIDB/04378/2020 Norma transitória DL 57/2016 |
id |
RCAP_03946166b10507aa87765be19b9effae |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/109143 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
A Computer-Aided Drug Design Approach to Predict Marine Drug-Like Leads for SARS-CoV-2 Main Protease Inhibitionactinomycetesdrug discoverymachine learning (ML) techniquesmain protease enzyme (Mpro)marine natural products (MNPs)molecular dockingquantitative structure–activity relationship (QSAR)severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)virtual screeningUIDB/50006/2020 UIDB/04378/2020 Norma transitória DL 57/2016The investigation of marine natural products (MNPs) as key resources for the discovery of drugs to mitigate the COVID-19 pandemic is a developing field. In this work, computer-aided drug design (CADD) approaches comprising ligand- and structure-based methods were explored for predicting SARS-CoV-2 main protease (Mpro) inhibitors. The CADD ligand-based method used a quantitative structure–activity relationship (QSAR) classification model that was built using 5276 organic molecules extracted from the ChEMBL database with SARS-CoV-2 screening data. The best model achieved an overall predictive accuracy of up to 67% for an external and internal validation using test and training sets. Moreover, based on the best QSAR model, a virtual screening campaign was carried out using 11,162 MNPs retrieved from the Reaxys® database, 7 in-house MNPs obtained from marine-derived actinomycetes by the team, and 14 MNPs that are currently in the clinical pipeline. All the MNPs from the virtual screening libraries that were predicted as belonging to class A were selected for the CADD structure-based method. In the CADD structure-based approach, the 494 MNPs selected by the QSAR approach were screened by molecular docking against Mpro enzyme. A list of virtual screening hits comprising fifteen MNPs was assented by establishing several limits in this CADD approach, and five MNPs were proposed as the most promising marine drug-like leads as SARS-CoV-2 Mpro inhibitors, a benzo[f]pyrano[4,3-b]chromene, notoamide I, emindole SB beta-mannoside, and two bromoindole derivatives.DQ - Departamento de QuímicaLAQV@REQUIMTEUCIBIO - Applied Molecular Biosciences UnitRUNGaudêncio, Susana PereiraPereira, Florbela2020-12-22T05:17:40Z2020-12-102020-12-10T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article17application/pdfhttp://hdl.handle.net/10362/109143eng1660-3397PURE: 26950082https://doi.org/10.3390/md18120633info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-22T17:49:31Zoai:run.unl.pt:10362/109143Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-22T17:49:31Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
A Computer-Aided Drug Design Approach to Predict Marine Drug-Like Leads for SARS-CoV-2 Main Protease Inhibition |
title |
A Computer-Aided Drug Design Approach to Predict Marine Drug-Like Leads for SARS-CoV-2 Main Protease Inhibition |
spellingShingle |
A Computer-Aided Drug Design Approach to Predict Marine Drug-Like Leads for SARS-CoV-2 Main Protease Inhibition Gaudêncio, Susana Pereira actinomycetes drug discovery machine learning (ML) techniques main protease enzyme (Mpro) marine natural products (MNPs) molecular docking quantitative structure–activity relationship (QSAR) severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virtual screening |
title_short |
A Computer-Aided Drug Design Approach to Predict Marine Drug-Like Leads for SARS-CoV-2 Main Protease Inhibition |
title_full |
A Computer-Aided Drug Design Approach to Predict Marine Drug-Like Leads for SARS-CoV-2 Main Protease Inhibition |
title_fullStr |
A Computer-Aided Drug Design Approach to Predict Marine Drug-Like Leads for SARS-CoV-2 Main Protease Inhibition |
title_full_unstemmed |
A Computer-Aided Drug Design Approach to Predict Marine Drug-Like Leads for SARS-CoV-2 Main Protease Inhibition |
title_sort |
A Computer-Aided Drug Design Approach to Predict Marine Drug-Like Leads for SARS-CoV-2 Main Protease Inhibition |
author |
Gaudêncio, Susana Pereira |
author_facet |
Gaudêncio, Susana Pereira Pereira, Florbela |
author_role |
author |
author2 |
Pereira, Florbela |
author2_role |
author |
dc.contributor.none.fl_str_mv |
DQ - Departamento de Química LAQV@REQUIMTE UCIBIO - Applied Molecular Biosciences Unit RUN |
dc.contributor.author.fl_str_mv |
Gaudêncio, Susana Pereira Pereira, Florbela |
dc.subject.por.fl_str_mv |
actinomycetes drug discovery machine learning (ML) techniques main protease enzyme (Mpro) marine natural products (MNPs) molecular docking quantitative structure–activity relationship (QSAR) severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virtual screening |
topic |
actinomycetes drug discovery machine learning (ML) techniques main protease enzyme (Mpro) marine natural products (MNPs) molecular docking quantitative structure–activity relationship (QSAR) severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virtual screening |
description |
UIDB/50006/2020 UIDB/04378/2020 Norma transitória DL 57/2016 |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-12-22T05:17:40Z 2020-12-10 2020-12-10T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/109143 |
url |
http://hdl.handle.net/10362/109143 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1660-3397 PURE: 26950082 https://doi.org/10.3390/md18120633 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
17 application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817545773094535168 |