Rational genetic engineering of insect cells to improve rAAVs and influenza VLPs production yield utilizing the baculovirus expression vector system

Detalhes bibliográficos
Autor(a) principal: Graça, Miguel Ângelo Matos
Data de Publicação: 2022
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/145992
Resumo: The insect cells-baculovirus expression vector system (IC-BEVS) is one of the uprising expression systems in the biopharmaceutical industry to produce vaccines and gene therapy vectors, allowing for high expression levels in short time frames. Despite its benefits, IC-BEVS is a transient system due to the baculovirus lytic nature, which causes the productivity and/or quality of products generated to be impacted. Improvements to the expression platform, and in particular to the cell line, is thus essential in order to bring IC-BEVS products faster to market. However, this has been limited by the lack of well-established tools for genetic engineering in insect cells. This thesis aimed at overcoming these bottlenecks by establishing a gene editing pipeline based on the CRISPR-Cas9 system for simple and fast gene(s) knockout in Sf9 cells towards improved phenotypes. To establish the pipeline, different transfection methods were explored as to their potential to deliver the ribonucleoprotein complex comprising the Cas9 enzyme and a guide RNA that targeted the fused lobes (fdl) gene expressing the β-N-acetylglucosaminidase enzyme. Lipofection was identified as the best method with up to 85 % of gene editing efficiency achieved in a single transfection step. To validate the system, Sf-caspase-1, a gene associated to apoptosis (pathway demonstrated by in-house data to be up-regulated upon infection and linked to increased product titers), was used as a model knockout target. Editing efficiency of Sf-caspase-1 was optimized, obtaining a highly edited population. Single-cell cloning by limited dilution was implemented and Sf-caspase-1 knockout clones identified. Isolated clones were evaluated for cell growth, showing similar kinetics to non-edited Sf9 cells. In addition, clones showed improved resistance to apoptosis and generated slightly improved titers of recombinant adeno-associated viruses and influenza virus-like particles when compared to non-edited Sf9 cells. Overall, an efficient CRISPR-Cas9 gene editing pipeline in insect cells was successfully established, which can assist rational engineering of insect cell lines towards improved production titers.
id RCAP_03a185af25cb368c1874933aa7506bfe
oai_identifier_str oai:run.unl.pt:10362/145992
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Rational genetic engineering of insect cells to improve rAAVs and influenza VLPs production yield utilizing the baculovirus expression vector systemIC-BEVSCell Line DevelopmentCRISPR/Cas9Ribonucleoprotein complexDomínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e TecnologiasThe insect cells-baculovirus expression vector system (IC-BEVS) is one of the uprising expression systems in the biopharmaceutical industry to produce vaccines and gene therapy vectors, allowing for high expression levels in short time frames. Despite its benefits, IC-BEVS is a transient system due to the baculovirus lytic nature, which causes the productivity and/or quality of products generated to be impacted. Improvements to the expression platform, and in particular to the cell line, is thus essential in order to bring IC-BEVS products faster to market. However, this has been limited by the lack of well-established tools for genetic engineering in insect cells. This thesis aimed at overcoming these bottlenecks by establishing a gene editing pipeline based on the CRISPR-Cas9 system for simple and fast gene(s) knockout in Sf9 cells towards improved phenotypes. To establish the pipeline, different transfection methods were explored as to their potential to deliver the ribonucleoprotein complex comprising the Cas9 enzyme and a guide RNA that targeted the fused lobes (fdl) gene expressing the β-N-acetylglucosaminidase enzyme. Lipofection was identified as the best method with up to 85 % of gene editing efficiency achieved in a single transfection step. To validate the system, Sf-caspase-1, a gene associated to apoptosis (pathway demonstrated by in-house data to be up-regulated upon infection and linked to increased product titers), was used as a model knockout target. Editing efficiency of Sf-caspase-1 was optimized, obtaining a highly edited population. Single-cell cloning by limited dilution was implemented and Sf-caspase-1 knockout clones identified. Isolated clones were evaluated for cell growth, showing similar kinetics to non-edited Sf9 cells. In addition, clones showed improved resistance to apoptosis and generated slightly improved titers of recombinant adeno-associated viruses and influenza virus-like particles when compared to non-edited Sf9 cells. Overall, an efficient CRISPR-Cas9 gene editing pipeline in insect cells was successfully established, which can assist rational engineering of insect cell lines towards improved production titers.O sistema vetorial de expressão de baculovírus em células de insecto (IC-BEVS) é um sistema de expressão em ascensão na indústria biofarmacêutica para produzir vacinas e vetores de terapia genética, permitindo altos níveis de expressão em prazos curtos. Apesar destes benefícios, o IC-BEVS é um sistema transiente devido à natureza lítica dos baculovírus, o que faz com que a produtividade e/ou qualidade dos produtos seja impactada. Melhorias na plataforma de expressão, e em particular à linha celular, são portanto essenciais de forma a levar produtos de IC-BEVS rapidamente para o mercado. No entanto, isto tem sido limitado por falta de ferramentas bem estabelecidas para engenharia genética de células de insetos. Esta tese visa superar estes limites através do estabelecimento de uma pipeline de engenharia genética baseada no sistema CRISPR-Cas9, para knockout simples e rápido de genes em células de Sf9 para melhorar fenótipos. Para estabelecer o método, diferentes métodos de transfeção foram explorados quanto ao seu potencial para entregar um complexo ribonucleoproteico composto pela a enzima Cas9 e o guia RNA com alvo no gene fused lobes (fdl) que expressa a enzyma β-N-acetilglucosaminidase. Lipofeção foi identificado como o melhor método com até 85 % de eficiência de edição genética alcançada em uma ronda de transfecção. Para validar o sistema, Sf-caspase-1, um gene associado à apoptose (uma via mostrada em dados obtidos in-house a ser sobreexpressa durante infeção e associada a títulos de produtos melhorados), foi usado como modelo de alvo de knockout. A edição de Sf-caspase-1 foi otimizada, e uma população altamente editada foi obtida. Single-cell cloning por diluição limitada foi implementada e clones com knockout de Sf-caspase-1 foram identificados. Clones isolados foram avaliados quanto ao crescimento celular, mostrando comportamento semelhante a células de Sf9 não-editadas. Adicionalmente, os clones mostraram uma melhor resistência à apoptose e geraram títulos ligeiramente melhorados de vírus adeno-associados recombinantes (rAAVs) e partículas virus-like (VLPs) quando comparados com células de Sf9 não-editadas. Em geral, um protocolo eficiente baseado no sistema CRISPR-Cas9 foi estabelecido com sucesso em células de inseto, o que pode assistir engenharia racional de linhas celulares de insecto tendo como alvo títulos de produção melhorados.Roldão, AntónioPlanels, JoseRUNGraça, Miguel Ângelo Matos2022-11-082025-10-01T00:00:00Z2022-11-08T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/145992enginfo:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:26:54Zoai:run.unl.pt:10362/145992Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:52:23.659731Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Rational genetic engineering of insect cells to improve rAAVs and influenza VLPs production yield utilizing the baculovirus expression vector system
title Rational genetic engineering of insect cells to improve rAAVs and influenza VLPs production yield utilizing the baculovirus expression vector system
spellingShingle Rational genetic engineering of insect cells to improve rAAVs and influenza VLPs production yield utilizing the baculovirus expression vector system
Graça, Miguel Ângelo Matos
IC-BEVS
Cell Line Development
CRISPR/Cas9
Ribonucleoprotein complex
Domínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e Tecnologias
title_short Rational genetic engineering of insect cells to improve rAAVs and influenza VLPs production yield utilizing the baculovirus expression vector system
title_full Rational genetic engineering of insect cells to improve rAAVs and influenza VLPs production yield utilizing the baculovirus expression vector system
title_fullStr Rational genetic engineering of insect cells to improve rAAVs and influenza VLPs production yield utilizing the baculovirus expression vector system
title_full_unstemmed Rational genetic engineering of insect cells to improve rAAVs and influenza VLPs production yield utilizing the baculovirus expression vector system
title_sort Rational genetic engineering of insect cells to improve rAAVs and influenza VLPs production yield utilizing the baculovirus expression vector system
author Graça, Miguel Ângelo Matos
author_facet Graça, Miguel Ângelo Matos
author_role author
dc.contributor.none.fl_str_mv Roldão, António
Planels, Jose
RUN
dc.contributor.author.fl_str_mv Graça, Miguel Ângelo Matos
dc.subject.por.fl_str_mv IC-BEVS
Cell Line Development
CRISPR/Cas9
Ribonucleoprotein complex
Domínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e Tecnologias
topic IC-BEVS
Cell Line Development
CRISPR/Cas9
Ribonucleoprotein complex
Domínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e Tecnologias
description The insect cells-baculovirus expression vector system (IC-BEVS) is one of the uprising expression systems in the biopharmaceutical industry to produce vaccines and gene therapy vectors, allowing for high expression levels in short time frames. Despite its benefits, IC-BEVS is a transient system due to the baculovirus lytic nature, which causes the productivity and/or quality of products generated to be impacted. Improvements to the expression platform, and in particular to the cell line, is thus essential in order to bring IC-BEVS products faster to market. However, this has been limited by the lack of well-established tools for genetic engineering in insect cells. This thesis aimed at overcoming these bottlenecks by establishing a gene editing pipeline based on the CRISPR-Cas9 system for simple and fast gene(s) knockout in Sf9 cells towards improved phenotypes. To establish the pipeline, different transfection methods were explored as to their potential to deliver the ribonucleoprotein complex comprising the Cas9 enzyme and a guide RNA that targeted the fused lobes (fdl) gene expressing the β-N-acetylglucosaminidase enzyme. Lipofection was identified as the best method with up to 85 % of gene editing efficiency achieved in a single transfection step. To validate the system, Sf-caspase-1, a gene associated to apoptosis (pathway demonstrated by in-house data to be up-regulated upon infection and linked to increased product titers), was used as a model knockout target. Editing efficiency of Sf-caspase-1 was optimized, obtaining a highly edited population. Single-cell cloning by limited dilution was implemented and Sf-caspase-1 knockout clones identified. Isolated clones were evaluated for cell growth, showing similar kinetics to non-edited Sf9 cells. In addition, clones showed improved resistance to apoptosis and generated slightly improved titers of recombinant adeno-associated viruses and influenza virus-like particles when compared to non-edited Sf9 cells. Overall, an efficient CRISPR-Cas9 gene editing pipeline in insect cells was successfully established, which can assist rational engineering of insect cell lines towards improved production titers.
publishDate 2022
dc.date.none.fl_str_mv 2022-11-08
2022-11-08T00:00:00Z
2025-10-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/145992
url http://hdl.handle.net/10362/145992
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799138115186589696