Design of a solar UAV for persistent wildlife monitoring
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.6/11697 |
Resumo: | Since the beginning of human flight, one of the most difficult goals has been to make an aircraft to stay aloft for very long periods of time. One of the solutions to this problem is to harvest solar energy during flight to increase the flight time and ideally achieve perpetual flight. Generally a solar aircraft does not need to be refuelled or recharged every time it has to start a mission, instead it collects solar energy during the daytime for flight and to recharge the battery for night flight. This process reduces the need for daily operations. This thesis presents a methodology to design a solar aircraft capable of flying for long periods of time which may be dedicated to monitoring wildlife. The developed methodology builds on previous works by Noth by adding the possibility of analysing several wing and tail airfoils as well as computing the corresponding aerodynamic characteristics to have more reliable results. It also includes a second phase where a more detailed analysis is performed to provide more reliable results for a given mission profile defined by a high-altitude day-time segment and a low altitude night flight. To make use of this methodology, the design process of a prototype is presented. This prototype serves to test the concept behind a mission of a fixed wing aircraft that flies at a latitude of 30oN to monitor wild animals for very long periods of time. The aircraft should also be able to fly any day of the year at this latitude. This prototype is made modular, so the wingspan can be increased or decreased depending on the energy needs along the year. At this latitude, the winter solstice has 10.2 hours of daylight and 13.8 hours of nighttime. Despite the prototype only flying from 1 hour before sunrise to 3 hours after sunset, this data is important for the full-scaled version. The design of a solar aircraft capable of flying several days is a challenging, complex and multidisciplinary problem. This work shows that even for a very light payload, a relatively large wing aircraft is needed due to the very low wing loading required for high efficiency. Also, parameters such as battery energy density, solar panel area ratio, structural mass, mission profile, and mission location and time of the year have important effects on the final design size and mass. |
id |
RCAP_044608e0d624da5c13f0f2974d0e2324 |
---|---|
oai_identifier_str |
oai:ubibliorum.ubi.pt:10400.6/11697 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Design of a solar UAV for persistent wildlife monitoringMetodologia de ProjetoProjeto de AeronavesUav SolarDomínio/Área Científica::Engenharia e Tecnologia::Engenharia AeronáuticaSince the beginning of human flight, one of the most difficult goals has been to make an aircraft to stay aloft for very long periods of time. One of the solutions to this problem is to harvest solar energy during flight to increase the flight time and ideally achieve perpetual flight. Generally a solar aircraft does not need to be refuelled or recharged every time it has to start a mission, instead it collects solar energy during the daytime for flight and to recharge the battery for night flight. This process reduces the need for daily operations. This thesis presents a methodology to design a solar aircraft capable of flying for long periods of time which may be dedicated to monitoring wildlife. The developed methodology builds on previous works by Noth by adding the possibility of analysing several wing and tail airfoils as well as computing the corresponding aerodynamic characteristics to have more reliable results. It also includes a second phase where a more detailed analysis is performed to provide more reliable results for a given mission profile defined by a high-altitude day-time segment and a low altitude night flight. To make use of this methodology, the design process of a prototype is presented. This prototype serves to test the concept behind a mission of a fixed wing aircraft that flies at a latitude of 30oN to monitor wild animals for very long periods of time. The aircraft should also be able to fly any day of the year at this latitude. This prototype is made modular, so the wingspan can be increased or decreased depending on the energy needs along the year. At this latitude, the winter solstice has 10.2 hours of daylight and 13.8 hours of nighttime. Despite the prototype only flying from 1 hour before sunrise to 3 hours after sunset, this data is important for the full-scaled version. The design of a solar aircraft capable of flying several days is a challenging, complex and multidisciplinary problem. This work shows that even for a very light payload, a relatively large wing aircraft is needed due to the very low wing loading required for high efficiency. Also, parameters such as battery energy density, solar panel area ratio, structural mass, mission profile, and mission location and time of the year have important effects on the final design size and mass.Desde o início da aviação, um dos objetivos mais difíceis de alcançar tem sido aumentar o tempo de voo significativamente. Uma solução para este problema é captar energia solar para aumentar o tempo de voo, e idealmente atingir o voo perpétuo. Uma aeronave solar não precisa de ser reabastecida ou recarregada sempre que comece uma missão, em vez disso, a aeronave capta a energia solar durante o dia para fornecer energia durante o voo e para recarregar a bateria, e depois utiliza a energia armazenada para o voo noturno. Este processo reduz a necessidade de operações diárias. Esta tese apresenta uma metodologia para projetar uma aeronave solar capaz de voar por longos períodos de tempo e dedicada à monitorização de vida selvagem. A metodologia desenvolvida baseia-se em trabalhos anteriores de Noth, adicionando a possibilidade de analisar vários perfis alares para a asa e cauda da aeronave, bem como calcular as respetivas características aerodinâmicas para obter resultados mais confiáveis. Também inclui uma segunda fase onde uma análise mais detalhada é realizada para fornecer resultados mais confiáveis para um determinado perfil de missão definido por um segmento diurno de alta altitude e um voo noturno de baixa altitude. No fim, uma terceira fase para análise de detalhes como conexões entre partes da aeronave é feita. Para fazer uso desta metodologia é apresentado o projeto de um protótipo. Este protótipo serve para testar o conceito por trás de uma missão de uma aeronave de asa fixa que voa a uma latitude de 30oN para monitorizar animais selvagens por longos períodos de tempo. A aeronave também deve ser capaz de voar em qualquer dia do ano nesta latitude. Este protótipo é modular para que a envergadura da asa possa ser alterada, dependendo das necessidades energéticas ao longo do ano. Nesta latitude, o solstício de inverno tem 10.2 horas de luz durante o dia e 13.8 horas de noite. Apesar do protótipo voar apenas entre 1 hora antes de o nascer do Sol até 3 horas após o por do Sol, estes dados são importantes para a versão final da aeronave. O projeto de uma aeronave solar capaz de voar vários dias é um problema complexo e multidisciplinar. Este trabalho mostra que mesmo para uma massa de carga útil muito reduzida, uma aeronave de asa relativamente grande é necessária devido a carga alar baixa requerida pela alta eficiência. Alem disso, parâmetros como densidade energética das baterias, área dos painéis solares, massa da estrutura, perfil da missão, localização da missão e época do ano tem efeitos importantes no tamanho e massa do projeto final.Gamboa, Pedro VieirauBibliorumSantos, Rúben David Almeida2022-01-12T15:15:47Z2021-11-112021-09-242021-11-11T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.6/11697TID:202847420enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-12-15T09:54:23Zoai:ubibliorum.ubi.pt:10400.6/11697Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:51:25.568250Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Design of a solar UAV for persistent wildlife monitoring |
title |
Design of a solar UAV for persistent wildlife monitoring |
spellingShingle |
Design of a solar UAV for persistent wildlife monitoring Santos, Rúben David Almeida Metodologia de Projeto Projeto de Aeronaves Uav Solar Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Aeronáutica |
title_short |
Design of a solar UAV for persistent wildlife monitoring |
title_full |
Design of a solar UAV for persistent wildlife monitoring |
title_fullStr |
Design of a solar UAV for persistent wildlife monitoring |
title_full_unstemmed |
Design of a solar UAV for persistent wildlife monitoring |
title_sort |
Design of a solar UAV for persistent wildlife monitoring |
author |
Santos, Rúben David Almeida |
author_facet |
Santos, Rúben David Almeida |
author_role |
author |
dc.contributor.none.fl_str_mv |
Gamboa, Pedro Vieira uBibliorum |
dc.contributor.author.fl_str_mv |
Santos, Rúben David Almeida |
dc.subject.por.fl_str_mv |
Metodologia de Projeto Projeto de Aeronaves Uav Solar Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Aeronáutica |
topic |
Metodologia de Projeto Projeto de Aeronaves Uav Solar Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Aeronáutica |
description |
Since the beginning of human flight, one of the most difficult goals has been to make an aircraft to stay aloft for very long periods of time. One of the solutions to this problem is to harvest solar energy during flight to increase the flight time and ideally achieve perpetual flight. Generally a solar aircraft does not need to be refuelled or recharged every time it has to start a mission, instead it collects solar energy during the daytime for flight and to recharge the battery for night flight. This process reduces the need for daily operations. This thesis presents a methodology to design a solar aircraft capable of flying for long periods of time which may be dedicated to monitoring wildlife. The developed methodology builds on previous works by Noth by adding the possibility of analysing several wing and tail airfoils as well as computing the corresponding aerodynamic characteristics to have more reliable results. It also includes a second phase where a more detailed analysis is performed to provide more reliable results for a given mission profile defined by a high-altitude day-time segment and a low altitude night flight. To make use of this methodology, the design process of a prototype is presented. This prototype serves to test the concept behind a mission of a fixed wing aircraft that flies at a latitude of 30oN to monitor wild animals for very long periods of time. The aircraft should also be able to fly any day of the year at this latitude. This prototype is made modular, so the wingspan can be increased or decreased depending on the energy needs along the year. At this latitude, the winter solstice has 10.2 hours of daylight and 13.8 hours of nighttime. Despite the prototype only flying from 1 hour before sunrise to 3 hours after sunset, this data is important for the full-scaled version. The design of a solar aircraft capable of flying several days is a challenging, complex and multidisciplinary problem. This work shows that even for a very light payload, a relatively large wing aircraft is needed due to the very low wing loading required for high efficiency. Also, parameters such as battery energy density, solar panel area ratio, structural mass, mission profile, and mission location and time of the year have important effects on the final design size and mass. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-11-11 2021-09-24 2021-11-11T00:00:00Z 2022-01-12T15:15:47Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.6/11697 TID:202847420 |
url |
http://hdl.handle.net/10400.6/11697 |
identifier_str_mv |
TID:202847420 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799136403451281408 |