Modified SqueezeNet Architecture for Parkinson's Disease Detection Based on Keypress Data

Detalhes bibliográficos
Autor(a) principal: Lucas Salvador Bernardo
Data de Publicação: 2022
Outros Autores: Robertas Damaševicius, Sai Ho Ling, Victor Hugo C. de Albuquerque, João Manuel R. S. Tavares
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://hdl.handle.net/10216/145978
Resumo: Parkinson's disease (PD) is the most common form of Parkinsonism, which is a group of neurological disorders with PD-like motor impairments. The disease affects over 6 million people worldwide and is characterized by motor and non-motor symptoms. The affected person has trouble in controlling movements, which may affect simple daily-life tasks, such as typing on a computer. We propose the application of a modified SqueezeNet convolutional neural network (CNN) for detecting PD based on the subject's key-typing patterns. First, the data are pre-processed using data standardization and the Synthetic Minority Oversampling Technique (SMOTE), and then a Continuous Wavelet Transformation is applied to generate spectrograms used for training and testing a modified SqueezeNet model. The modified SqueezeNet model achieved an accuracy of 90%, representing a noticeable improvement in comparison to other approaches.
id RCAP_045f1e767175c9e43b117768d939100d
oai_identifier_str oai:repositorio-aberto.up.pt:10216/145978
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Modified SqueezeNet Architecture for Parkinson's Disease Detection Based on Keypress DataCiências Tecnológicas, Ciências médicas e da saúdeTechnological sciences, Medical and Health sciencesParkinson's disease (PD) is the most common form of Parkinsonism, which is a group of neurological disorders with PD-like motor impairments. The disease affects over 6 million people worldwide and is characterized by motor and non-motor symptoms. The affected person has trouble in controlling movements, which may affect simple daily-life tasks, such as typing on a computer. We propose the application of a modified SqueezeNet convolutional neural network (CNN) for detecting PD based on the subject's key-typing patterns. First, the data are pre-processed using data standardization and the Synthetic Minority Oversampling Technique (SMOTE), and then a Continuous Wavelet Transformation is applied to generate spectrograms used for training and testing a modified SqueezeNet model. The modified SqueezeNet model achieved an accuracy of 90%, representing a noticeable improvement in comparison to other approaches.2022-112022-11-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleimage/pngapplication/pdfhttps://hdl.handle.net/10216/145978eng10.3390/biomedicines10112746Lucas Salvador BernardoRobertas DamaševiciusSai Ho LingVictor Hugo C. de AlbuquerqueJoão Manuel R. S. Tavaresinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T15:28:58Zoai:repositorio-aberto.up.pt:10216/145978Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:24:38.811212Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Modified SqueezeNet Architecture for Parkinson's Disease Detection Based on Keypress Data
title Modified SqueezeNet Architecture for Parkinson's Disease Detection Based on Keypress Data
spellingShingle Modified SqueezeNet Architecture for Parkinson's Disease Detection Based on Keypress Data
Lucas Salvador Bernardo
Ciências Tecnológicas, Ciências médicas e da saúde
Technological sciences, Medical and Health sciences
title_short Modified SqueezeNet Architecture for Parkinson's Disease Detection Based on Keypress Data
title_full Modified SqueezeNet Architecture for Parkinson's Disease Detection Based on Keypress Data
title_fullStr Modified SqueezeNet Architecture for Parkinson's Disease Detection Based on Keypress Data
title_full_unstemmed Modified SqueezeNet Architecture for Parkinson's Disease Detection Based on Keypress Data
title_sort Modified SqueezeNet Architecture for Parkinson's Disease Detection Based on Keypress Data
author Lucas Salvador Bernardo
author_facet Lucas Salvador Bernardo
Robertas Damaševicius
Sai Ho Ling
Victor Hugo C. de Albuquerque
João Manuel R. S. Tavares
author_role author
author2 Robertas Damaševicius
Sai Ho Ling
Victor Hugo C. de Albuquerque
João Manuel R. S. Tavares
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Lucas Salvador Bernardo
Robertas Damaševicius
Sai Ho Ling
Victor Hugo C. de Albuquerque
João Manuel R. S. Tavares
dc.subject.por.fl_str_mv Ciências Tecnológicas, Ciências médicas e da saúde
Technological sciences, Medical and Health sciences
topic Ciências Tecnológicas, Ciências médicas e da saúde
Technological sciences, Medical and Health sciences
description Parkinson's disease (PD) is the most common form of Parkinsonism, which is a group of neurological disorders with PD-like motor impairments. The disease affects over 6 million people worldwide and is characterized by motor and non-motor symptoms. The affected person has trouble in controlling movements, which may affect simple daily-life tasks, such as typing on a computer. We propose the application of a modified SqueezeNet convolutional neural network (CNN) for detecting PD based on the subject's key-typing patterns. First, the data are pre-processed using data standardization and the Synthetic Minority Oversampling Technique (SMOTE), and then a Continuous Wavelet Transformation is applied to generate spectrograms used for training and testing a modified SqueezeNet model. The modified SqueezeNet model achieved an accuracy of 90%, representing a noticeable improvement in comparison to other approaches.
publishDate 2022
dc.date.none.fl_str_mv 2022-11
2022-11-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10216/145978
url https://hdl.handle.net/10216/145978
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.3390/biomedicines10112746
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv image/png
application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136161152630784