Modified SqueezeNet Architecture for Parkinson's Disease Detection Based on Keypress Data
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://hdl.handle.net/10216/145978 |
Resumo: | Parkinson's disease (PD) is the most common form of Parkinsonism, which is a group of neurological disorders with PD-like motor impairments. The disease affects over 6 million people worldwide and is characterized by motor and non-motor symptoms. The affected person has trouble in controlling movements, which may affect simple daily-life tasks, such as typing on a computer. We propose the application of a modified SqueezeNet convolutional neural network (CNN) for detecting PD based on the subject's key-typing patterns. First, the data are pre-processed using data standardization and the Synthetic Minority Oversampling Technique (SMOTE), and then a Continuous Wavelet Transformation is applied to generate spectrograms used for training and testing a modified SqueezeNet model. The modified SqueezeNet model achieved an accuracy of 90%, representing a noticeable improvement in comparison to other approaches. |
id |
RCAP_045f1e767175c9e43b117768d939100d |
---|---|
oai_identifier_str |
oai:repositorio-aberto.up.pt:10216/145978 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Modified SqueezeNet Architecture for Parkinson's Disease Detection Based on Keypress DataCiências Tecnológicas, Ciências médicas e da saúdeTechnological sciences, Medical and Health sciencesParkinson's disease (PD) is the most common form of Parkinsonism, which is a group of neurological disorders with PD-like motor impairments. The disease affects over 6 million people worldwide and is characterized by motor and non-motor symptoms. The affected person has trouble in controlling movements, which may affect simple daily-life tasks, such as typing on a computer. We propose the application of a modified SqueezeNet convolutional neural network (CNN) for detecting PD based on the subject's key-typing patterns. First, the data are pre-processed using data standardization and the Synthetic Minority Oversampling Technique (SMOTE), and then a Continuous Wavelet Transformation is applied to generate spectrograms used for training and testing a modified SqueezeNet model. The modified SqueezeNet model achieved an accuracy of 90%, representing a noticeable improvement in comparison to other approaches.2022-112022-11-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleimage/pngapplication/pdfhttps://hdl.handle.net/10216/145978eng10.3390/biomedicines10112746Lucas Salvador BernardoRobertas DamaševiciusSai Ho LingVictor Hugo C. de AlbuquerqueJoão Manuel R. S. Tavaresinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T15:28:58Zoai:repositorio-aberto.up.pt:10216/145978Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:24:38.811212Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Modified SqueezeNet Architecture for Parkinson's Disease Detection Based on Keypress Data |
title |
Modified SqueezeNet Architecture for Parkinson's Disease Detection Based on Keypress Data |
spellingShingle |
Modified SqueezeNet Architecture for Parkinson's Disease Detection Based on Keypress Data Lucas Salvador Bernardo Ciências Tecnológicas, Ciências médicas e da saúde Technological sciences, Medical and Health sciences |
title_short |
Modified SqueezeNet Architecture for Parkinson's Disease Detection Based on Keypress Data |
title_full |
Modified SqueezeNet Architecture for Parkinson's Disease Detection Based on Keypress Data |
title_fullStr |
Modified SqueezeNet Architecture for Parkinson's Disease Detection Based on Keypress Data |
title_full_unstemmed |
Modified SqueezeNet Architecture for Parkinson's Disease Detection Based on Keypress Data |
title_sort |
Modified SqueezeNet Architecture for Parkinson's Disease Detection Based on Keypress Data |
author |
Lucas Salvador Bernardo |
author_facet |
Lucas Salvador Bernardo Robertas Damaševicius Sai Ho Ling Victor Hugo C. de Albuquerque João Manuel R. S. Tavares |
author_role |
author |
author2 |
Robertas Damaševicius Sai Ho Ling Victor Hugo C. de Albuquerque João Manuel R. S. Tavares |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Lucas Salvador Bernardo Robertas Damaševicius Sai Ho Ling Victor Hugo C. de Albuquerque João Manuel R. S. Tavares |
dc.subject.por.fl_str_mv |
Ciências Tecnológicas, Ciências médicas e da saúde Technological sciences, Medical and Health sciences |
topic |
Ciências Tecnológicas, Ciências médicas e da saúde Technological sciences, Medical and Health sciences |
description |
Parkinson's disease (PD) is the most common form of Parkinsonism, which is a group of neurological disorders with PD-like motor impairments. The disease affects over 6 million people worldwide and is characterized by motor and non-motor symptoms. The affected person has trouble in controlling movements, which may affect simple daily-life tasks, such as typing on a computer. We propose the application of a modified SqueezeNet convolutional neural network (CNN) for detecting PD based on the subject's key-typing patterns. First, the data are pre-processed using data standardization and the Synthetic Minority Oversampling Technique (SMOTE), and then a Continuous Wavelet Transformation is applied to generate spectrograms used for training and testing a modified SqueezeNet model. The modified SqueezeNet model achieved an accuracy of 90%, representing a noticeable improvement in comparison to other approaches. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-11 2022-11-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/10216/145978 |
url |
https://hdl.handle.net/10216/145978 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.3390/biomedicines10112746 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
image/png application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799136161152630784 |