A full featured configurable accelerator for object detection with YOLO
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.21/13689 |
Resumo: | Object detection and classification is an essential task of computer vision. A very efficient algorithm for detection and classification is YOLO (You Look Only Once). We consider hardware architectures to run YOLO in real-time on embedded platforms. Designing a new dedicated accelerator for each new version of YOLO is not feasible given the fast delivery of new versions. This work's primary goal is to design a configurable and scalable core for creating specific object detection and classification systems based on YOLO, targeting embedded platforms. The core accelerates the execution of all the algorithm steps, including pre-processing, model inference and post-processing. It considers a fixed-point format, linearised activation functions, batch-normalisation, folding, and a hardware structure that exploits most of the available parallelism in CNN processing. The proposed core is configured for real-time execution of YOLOv3-Tiny and YOLOv4-Tiny, integrated into a RISC-V-based system-on-chip architecture and prototyped in an UltraScale XCKU040 FPGA (Field Programmable Gate Array). The solution achieves a performance of 32 and 31 frames per second for YOLOv3-Tiny and YOLOv4-Tiny, respectively, with a 16-bit fixed-point format. Compared to previous proposals, it improves the frame rate at a higher performance efficiency. The performance, area efficiency and configurability of the proposed core enable the fast development of real-time YOLO-based object detectors on embedded systems. |
id |
RCAP_052dbc0f962f513820d106275121653f |
---|---|
oai_identifier_str |
oai:repositorio.ipl.pt:10400.21/13689 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
A full featured configurable accelerator for object detection with YOLOObject detectionConvolutional neural networkFPGALightweight YOLOObject detection and classification is an essential task of computer vision. A very efficient algorithm for detection and classification is YOLO (You Look Only Once). We consider hardware architectures to run YOLO in real-time on embedded platforms. Designing a new dedicated accelerator for each new version of YOLO is not feasible given the fast delivery of new versions. This work's primary goal is to design a configurable and scalable core for creating specific object detection and classification systems based on YOLO, targeting embedded platforms. The core accelerates the execution of all the algorithm steps, including pre-processing, model inference and post-processing. It considers a fixed-point format, linearised activation functions, batch-normalisation, folding, and a hardware structure that exploits most of the available parallelism in CNN processing. The proposed core is configured for real-time execution of YOLOv3-Tiny and YOLOv4-Tiny, integrated into a RISC-V-based system-on-chip architecture and prototyped in an UltraScale XCKU040 FPGA (Field Programmable Gate Array). The solution achieves a performance of 32 and 31 frames per second for YOLOv3-Tiny and YOLOv4-Tiny, respectively, with a 16-bit fixed-point format. Compared to previous proposals, it improves the frame rate at a higher performance efficiency. The performance, area efficiency and configurability of the proposed core enable the fast development of real-time YOLO-based object detectors on embedded systems.IEEERCIPLPestana, DanielMiranda, Pedro R.Lopes, João D.Duarte, RuiVéstias, MárioNeto, Horácio CDe Sousa, Jose2021-09-07T09:41:09Z2021-05-192021-05-19T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.21/13689engPESTANA, Daniel; [et al] – A full featured configurable accelerator for object detection with YOLO. IEEE Access. ISSN 2169-3536. Vol. 9 (2021), pp. 75864-758772169-353610.1109/ACCESS.2021.3081818metadata only accessinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-08-03T10:08:49Zoai:repositorio.ipl.pt:10400.21/13689Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:21:35.297738Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
A full featured configurable accelerator for object detection with YOLO |
title |
A full featured configurable accelerator for object detection with YOLO |
spellingShingle |
A full featured configurable accelerator for object detection with YOLO Pestana, Daniel Object detection Convolutional neural network FPGA Lightweight YOLO |
title_short |
A full featured configurable accelerator for object detection with YOLO |
title_full |
A full featured configurable accelerator for object detection with YOLO |
title_fullStr |
A full featured configurable accelerator for object detection with YOLO |
title_full_unstemmed |
A full featured configurable accelerator for object detection with YOLO |
title_sort |
A full featured configurable accelerator for object detection with YOLO |
author |
Pestana, Daniel |
author_facet |
Pestana, Daniel Miranda, Pedro R. Lopes, João D. Duarte, Rui Véstias, Mário Neto, Horácio C De Sousa, Jose |
author_role |
author |
author2 |
Miranda, Pedro R. Lopes, João D. Duarte, Rui Véstias, Mário Neto, Horácio C De Sousa, Jose |
author2_role |
author author author author author author |
dc.contributor.none.fl_str_mv |
RCIPL |
dc.contributor.author.fl_str_mv |
Pestana, Daniel Miranda, Pedro R. Lopes, João D. Duarte, Rui Véstias, Mário Neto, Horácio C De Sousa, Jose |
dc.subject.por.fl_str_mv |
Object detection Convolutional neural network FPGA Lightweight YOLO |
topic |
Object detection Convolutional neural network FPGA Lightweight YOLO |
description |
Object detection and classification is an essential task of computer vision. A very efficient algorithm for detection and classification is YOLO (You Look Only Once). We consider hardware architectures to run YOLO in real-time on embedded platforms. Designing a new dedicated accelerator for each new version of YOLO is not feasible given the fast delivery of new versions. This work's primary goal is to design a configurable and scalable core for creating specific object detection and classification systems based on YOLO, targeting embedded platforms. The core accelerates the execution of all the algorithm steps, including pre-processing, model inference and post-processing. It considers a fixed-point format, linearised activation functions, batch-normalisation, folding, and a hardware structure that exploits most of the available parallelism in CNN processing. The proposed core is configured for real-time execution of YOLOv3-Tiny and YOLOv4-Tiny, integrated into a RISC-V-based system-on-chip architecture and prototyped in an UltraScale XCKU040 FPGA (Field Programmable Gate Array). The solution achieves a performance of 32 and 31 frames per second for YOLOv3-Tiny and YOLOv4-Tiny, respectively, with a 16-bit fixed-point format. Compared to previous proposals, it improves the frame rate at a higher performance efficiency. The performance, area efficiency and configurability of the proposed core enable the fast development of real-time YOLO-based object detectors on embedded systems. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-09-07T09:41:09Z 2021-05-19 2021-05-19T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.21/13689 |
url |
http://hdl.handle.net/10400.21/13689 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
PESTANA, Daniel; [et al] – A full featured configurable accelerator for object detection with YOLO. IEEE Access. ISSN 2169-3536. Vol. 9 (2021), pp. 75864-75877 2169-3536 10.1109/ACCESS.2021.3081818 |
dc.rights.driver.fl_str_mv |
metadata only access info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
metadata only access |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
IEEE |
publisher.none.fl_str_mv |
IEEE |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133487156953088 |