The monotone-light factorization for 2-categories via 2-preorders
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/35180 |
Resumo: | It is shown that the reflection 2Cat --> 2PreOrd of the category of all 2-categories into the category of 2-preorders determines a monotone-light factorization system on 2Cat and that the light morphisms are precisely the 2-functors faithful on 2-cells with respect to the vertical structure. In order to achieve such result it was also proved that the reflection 2Cat --> 2Preord has stable units, a stronger condition than admissibility in categorical Galois theory, and that the 2-functors surjective both on horizontally and on vertically composable triples of 2-cells are the effective descent morphisms in 2Cat. |
id |
RCAP_05b8f40e3828a42cb85f153578d23745 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/35180 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
The monotone-light factorization for 2-categories via 2-preordersMonotone-light factorization2-categoriesIt is shown that the reflection 2Cat --> 2PreOrd of the category of all 2-categories into the category of 2-preorders determines a monotone-light factorization system on 2Cat and that the light morphisms are precisely the 2-functors faithful on 2-cells with respect to the vertical structure. In order to achieve such result it was also proved that the reflection 2Cat --> 2Preord has stable units, a stronger condition than admissibility in categorical Galois theory, and that the 2-functors surjective both on horizontally and on vertically composable triples of 2-cells are the effective descent morphisms in 2Cat.2022-11-15T10:12:56Z2022-10-25T00:00:00Z2022-10-25info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/35180eng1201-561XXarez, João J.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:07:36Zoai:ria.ua.pt:10773/35180Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:06:12.775310Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
The monotone-light factorization for 2-categories via 2-preorders |
title |
The monotone-light factorization for 2-categories via 2-preorders |
spellingShingle |
The monotone-light factorization for 2-categories via 2-preorders Xarez, João J. Monotone-light factorization 2-categories |
title_short |
The monotone-light factorization for 2-categories via 2-preorders |
title_full |
The monotone-light factorization for 2-categories via 2-preorders |
title_fullStr |
The monotone-light factorization for 2-categories via 2-preorders |
title_full_unstemmed |
The monotone-light factorization for 2-categories via 2-preorders |
title_sort |
The monotone-light factorization for 2-categories via 2-preorders |
author |
Xarez, João J. |
author_facet |
Xarez, João J. |
author_role |
author |
dc.contributor.author.fl_str_mv |
Xarez, João J. |
dc.subject.por.fl_str_mv |
Monotone-light factorization 2-categories |
topic |
Monotone-light factorization 2-categories |
description |
It is shown that the reflection 2Cat --> 2PreOrd of the category of all 2-categories into the category of 2-preorders determines a monotone-light factorization system on 2Cat and that the light morphisms are precisely the 2-functors faithful on 2-cells with respect to the vertical structure. In order to achieve such result it was also proved that the reflection 2Cat --> 2Preord has stable units, a stronger condition than admissibility in categorical Galois theory, and that the 2-functors surjective both on horizontally and on vertically composable triples of 2-cells are the effective descent morphisms in 2Cat. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-11-15T10:12:56Z 2022-10-25T00:00:00Z 2022-10-25 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/35180 |
url |
http://hdl.handle.net/10773/35180 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1201-561X |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137717278212096 |