The monotone-light factorization for 2-categories via 2-preorders

Detalhes bibliográficos
Autor(a) principal: Xarez, João J.
Data de Publicação: 2022
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/35180
Resumo: It is shown that the reflection 2Cat --> 2PreOrd of the category of all 2-categories into the category of 2-preorders determines a monotone-light factorization system on 2Cat and that the light morphisms are precisely the 2-functors faithful on 2-cells with respect to the vertical structure. In order to achieve such result it was also proved that the reflection 2Cat --> 2Preord has stable units, a stronger condition than admissibility in categorical Galois theory, and that the 2-functors surjective both on horizontally and on vertically composable triples of 2-cells are the effective descent morphisms in 2Cat.
id RCAP_05b8f40e3828a42cb85f153578d23745
oai_identifier_str oai:ria.ua.pt:10773/35180
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling The monotone-light factorization for 2-categories via 2-preordersMonotone-light factorization2-categoriesIt is shown that the reflection 2Cat --> 2PreOrd of the category of all 2-categories into the category of 2-preorders determines a monotone-light factorization system on 2Cat and that the light morphisms are precisely the 2-functors faithful on 2-cells with respect to the vertical structure. In order to achieve such result it was also proved that the reflection 2Cat --> 2Preord has stable units, a stronger condition than admissibility in categorical Galois theory, and that the 2-functors surjective both on horizontally and on vertically composable triples of 2-cells are the effective descent morphisms in 2Cat.2022-11-15T10:12:56Z2022-10-25T00:00:00Z2022-10-25info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/35180eng1201-561XXarez, João J.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:07:36Zoai:ria.ua.pt:10773/35180Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:06:12.775310Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv The monotone-light factorization for 2-categories via 2-preorders
title The monotone-light factorization for 2-categories via 2-preorders
spellingShingle The monotone-light factorization for 2-categories via 2-preorders
Xarez, João J.
Monotone-light factorization
2-categories
title_short The monotone-light factorization for 2-categories via 2-preorders
title_full The monotone-light factorization for 2-categories via 2-preorders
title_fullStr The monotone-light factorization for 2-categories via 2-preorders
title_full_unstemmed The monotone-light factorization for 2-categories via 2-preorders
title_sort The monotone-light factorization for 2-categories via 2-preorders
author Xarez, João J.
author_facet Xarez, João J.
author_role author
dc.contributor.author.fl_str_mv Xarez, João J.
dc.subject.por.fl_str_mv Monotone-light factorization
2-categories
topic Monotone-light factorization
2-categories
description It is shown that the reflection 2Cat --> 2PreOrd of the category of all 2-categories into the category of 2-preorders determines a monotone-light factorization system on 2Cat and that the light morphisms are precisely the 2-functors faithful on 2-cells with respect to the vertical structure. In order to achieve such result it was also proved that the reflection 2Cat --> 2Preord has stable units, a stronger condition than admissibility in categorical Galois theory, and that the 2-functors surjective both on horizontally and on vertically composable triples of 2-cells are the effective descent morphisms in 2Cat.
publishDate 2022
dc.date.none.fl_str_mv 2022-11-15T10:12:56Z
2022-10-25T00:00:00Z
2022-10-25
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/35180
url http://hdl.handle.net/10773/35180
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1201-561X
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137717278212096