Time series morphological analysis applied to biomedical signals events detection

Detalhes bibliográficos
Autor(a) principal: Santos, Rui Pedro Silvestre dos
Data de Publicação: 2011
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/10227
Resumo: Dissertation submitted in the fufillment of the requirements for the Degree of Master in Biomedical Engineering
id RCAP_05c74e0b810b939f1929b619e16bad0c
oai_identifier_str oai:run.unl.pt:10362/10227
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Time series morphological analysis applied to biomedical signals events detectionBiosignalsAlgorithmsSignal-processingEvents detectionOnsetsTransientsDissertation submitted in the fufillment of the requirements for the Degree of Master in Biomedical EngineeringAutomated techniques for biosignal data acquisition and analysis have become increasingly powerful, particularly at the Biomedical Engineering research field. Nevertheless, it is verified the need to improve tools for signal pattern recognition and classification systems, in which the detection of specific events and the automatic signal segmentation are preliminary processing steps. The present dissertation introduces a signal-independent algorithm, which detects significant events in a biosignal. From a time series morphological analysis, the algorithm computes the instants when the most significant standard deviation discontinuities occur, segmenting the signal. An iterative optimization step is then applied. This assures that a minimal error is achieved when modeling these segments with polynomial regressions. The adjustment of a scale factor gives different detail levels of events detection. An accurate and objective algorithm performance evaluation procedure was designed. When applied on a set of synthetic signals, with known and quantitatively predefined events, an overall mean error of 20 samples between the detected and the actual events showed the high accuracy of the proposed algorithm. Its ability to perform the detection of signal activation onsets and transient waveshapes was also assessed, resulting in higher reliability than signal-specific standard methods. Some case studies, with signal processing requirements for which the developed algorithm can be suitably applied, were approached. The algorithm implementation in real-time, as part of an application developed during this research work, is also reported. The proposed algorithm detects significant signal events with accuracy and significant noise immunity. Its versatile design allows the application in different signals without previous knowledge on their statistical properties or specific preprocessing steps. It also brings added objectivity when compared with the exhaustive and time-consuming examiner analysis. The tool introduced in this dissertation represents a relevant contribution in events detection, a particularly important issue within the wide digital biosignal processing research field.Faculdade de Ciências e TecnologiaGamboa, HugoRUNSantos, Rui Pedro Silvestre dos2013-07-30T15:25:34Z20112011-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/10227enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T03:43:51Zoai:run.unl.pt:10362/10227Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:19:19.909522Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Time series morphological analysis applied to biomedical signals events detection
title Time series morphological analysis applied to biomedical signals events detection
spellingShingle Time series morphological analysis applied to biomedical signals events detection
Santos, Rui Pedro Silvestre dos
Biosignals
Algorithms
Signal-processing
Events detection
Onsets
Transients
title_short Time series morphological analysis applied to biomedical signals events detection
title_full Time series morphological analysis applied to biomedical signals events detection
title_fullStr Time series morphological analysis applied to biomedical signals events detection
title_full_unstemmed Time series morphological analysis applied to biomedical signals events detection
title_sort Time series morphological analysis applied to biomedical signals events detection
author Santos, Rui Pedro Silvestre dos
author_facet Santos, Rui Pedro Silvestre dos
author_role author
dc.contributor.none.fl_str_mv Gamboa, Hugo
RUN
dc.contributor.author.fl_str_mv Santos, Rui Pedro Silvestre dos
dc.subject.por.fl_str_mv Biosignals
Algorithms
Signal-processing
Events detection
Onsets
Transients
topic Biosignals
Algorithms
Signal-processing
Events detection
Onsets
Transients
description Dissertation submitted in the fufillment of the requirements for the Degree of Master in Biomedical Engineering
publishDate 2011
dc.date.none.fl_str_mv 2011
2011-01-01T00:00:00Z
2013-07-30T15:25:34Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/10227
url http://hdl.handle.net/10362/10227
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Faculdade de Ciências e Tecnologia
publisher.none.fl_str_mv Faculdade de Ciências e Tecnologia
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137836863062016