Fractional gradient methods via ψ-Hilfer derivative

Detalhes bibliográficos
Autor(a) principal: Vieira, N.
Data de Publicação: 2023
Outros Autores: Rodrigues, M. M., Ferreira, M.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/36752
Resumo: Motivated by the increasing of practical applications in fractional calculus, we study the classical gradient method under the perspective of the $\psi$-Hilfer derivative. This allows us to cover in our study several definitions of fractional derivatives that are found in the literature. The convergence of the $\psi$-Hilfer continuous fractional gradient method is studied both for strongly and non-strongly convex cases. Using a series representation of the target function, we develop an algorithm for the $\psi$-Hilfer fractional order gradient method. The numerical method obtained by truncating higher-order terms was tested and analyzed using benchmark functions. Considering variable order differentiation and optimizing the step size, the $\psi$-Hilfer fractional gradient method shows better results in terms of speed and accuracy. Our results generalize previous works in the literature.
id RCAP_064984135300c5bd7cef21682dab4ae5
oai_identifier_str oai:ria.ua.pt:10773/36752
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Fractional gradient methods via ψ-Hilfer derivativeFractional calculus$\psi$-Hilfer fractional derivativeFractional gradient methodOptimizationMotivated by the increasing of practical applications in fractional calculus, we study the classical gradient method under the perspective of the $\psi$-Hilfer derivative. This allows us to cover in our study several definitions of fractional derivatives that are found in the literature. The convergence of the $\psi$-Hilfer continuous fractional gradient method is studied both for strongly and non-strongly convex cases. Using a series representation of the target function, we develop an algorithm for the $\psi$-Hilfer fractional order gradient method. The numerical method obtained by truncating higher-order terms was tested and analyzed using benchmark functions. Considering variable order differentiation and optimizing the step size, the $\psi$-Hilfer fractional gradient method shows better results in terms of speed and accuracy. Our results generalize previous works in the literature.MDPI2023-03-30T15:09:33Z2023-03-01T00:00:00Z2023-03info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/36752eng10.3390/fractalfract7030275Vieira, N.Rodrigues, M. M.Ferreira, M.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:10:38Zoai:ria.ua.pt:10773/36752Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:07:22.392022Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Fractional gradient methods via ψ-Hilfer derivative
title Fractional gradient methods via ψ-Hilfer derivative
spellingShingle Fractional gradient methods via ψ-Hilfer derivative
Vieira, N.
Fractional calculus
$\psi$-Hilfer fractional derivative
Fractional gradient method
Optimization
title_short Fractional gradient methods via ψ-Hilfer derivative
title_full Fractional gradient methods via ψ-Hilfer derivative
title_fullStr Fractional gradient methods via ψ-Hilfer derivative
title_full_unstemmed Fractional gradient methods via ψ-Hilfer derivative
title_sort Fractional gradient methods via ψ-Hilfer derivative
author Vieira, N.
author_facet Vieira, N.
Rodrigues, M. M.
Ferreira, M.
author_role author
author2 Rodrigues, M. M.
Ferreira, M.
author2_role author
author
dc.contributor.author.fl_str_mv Vieira, N.
Rodrigues, M. M.
Ferreira, M.
dc.subject.por.fl_str_mv Fractional calculus
$\psi$-Hilfer fractional derivative
Fractional gradient method
Optimization
topic Fractional calculus
$\psi$-Hilfer fractional derivative
Fractional gradient method
Optimization
description Motivated by the increasing of practical applications in fractional calculus, we study the classical gradient method under the perspective of the $\psi$-Hilfer derivative. This allows us to cover in our study several definitions of fractional derivatives that are found in the literature. The convergence of the $\psi$-Hilfer continuous fractional gradient method is studied both for strongly and non-strongly convex cases. Using a series representation of the target function, we develop an algorithm for the $\psi$-Hilfer fractional order gradient method. The numerical method obtained by truncating higher-order terms was tested and analyzed using benchmark functions. Considering variable order differentiation and optimizing the step size, the $\psi$-Hilfer fractional gradient method shows better results in terms of speed and accuracy. Our results generalize previous works in the literature.
publishDate 2023
dc.date.none.fl_str_mv 2023-03-30T15:09:33Z
2023-03-01T00:00:00Z
2023-03
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/36752
url http://hdl.handle.net/10773/36752
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.3390/fractalfract7030275
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv MDPI
publisher.none.fl_str_mv MDPI
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137728786333696