Fractional gradient methods via ψ-Hilfer derivative
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/36752 |
Resumo: | Motivated by the increasing of practical applications in fractional calculus, we study the classical gradient method under the perspective of the $\psi$-Hilfer derivative. This allows us to cover in our study several definitions of fractional derivatives that are found in the literature. The convergence of the $\psi$-Hilfer continuous fractional gradient method is studied both for strongly and non-strongly convex cases. Using a series representation of the target function, we develop an algorithm for the $\psi$-Hilfer fractional order gradient method. The numerical method obtained by truncating higher-order terms was tested and analyzed using benchmark functions. Considering variable order differentiation and optimizing the step size, the $\psi$-Hilfer fractional gradient method shows better results in terms of speed and accuracy. Our results generalize previous works in the literature. |
id |
RCAP_064984135300c5bd7cef21682dab4ae5 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/36752 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Fractional gradient methods via ψ-Hilfer derivativeFractional calculus$\psi$-Hilfer fractional derivativeFractional gradient methodOptimizationMotivated by the increasing of practical applications in fractional calculus, we study the classical gradient method under the perspective of the $\psi$-Hilfer derivative. This allows us to cover in our study several definitions of fractional derivatives that are found in the literature. The convergence of the $\psi$-Hilfer continuous fractional gradient method is studied both for strongly and non-strongly convex cases. Using a series representation of the target function, we develop an algorithm for the $\psi$-Hilfer fractional order gradient method. The numerical method obtained by truncating higher-order terms was tested and analyzed using benchmark functions. Considering variable order differentiation and optimizing the step size, the $\psi$-Hilfer fractional gradient method shows better results in terms of speed and accuracy. Our results generalize previous works in the literature.MDPI2023-03-30T15:09:33Z2023-03-01T00:00:00Z2023-03info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/36752eng10.3390/fractalfract7030275Vieira, N.Rodrigues, M. M.Ferreira, M.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:10:38Zoai:ria.ua.pt:10773/36752Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:07:22.392022Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Fractional gradient methods via ψ-Hilfer derivative |
title |
Fractional gradient methods via ψ-Hilfer derivative |
spellingShingle |
Fractional gradient methods via ψ-Hilfer derivative Vieira, N. Fractional calculus $\psi$-Hilfer fractional derivative Fractional gradient method Optimization |
title_short |
Fractional gradient methods via ψ-Hilfer derivative |
title_full |
Fractional gradient methods via ψ-Hilfer derivative |
title_fullStr |
Fractional gradient methods via ψ-Hilfer derivative |
title_full_unstemmed |
Fractional gradient methods via ψ-Hilfer derivative |
title_sort |
Fractional gradient methods via ψ-Hilfer derivative |
author |
Vieira, N. |
author_facet |
Vieira, N. Rodrigues, M. M. Ferreira, M. |
author_role |
author |
author2 |
Rodrigues, M. M. Ferreira, M. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Vieira, N. Rodrigues, M. M. Ferreira, M. |
dc.subject.por.fl_str_mv |
Fractional calculus $\psi$-Hilfer fractional derivative Fractional gradient method Optimization |
topic |
Fractional calculus $\psi$-Hilfer fractional derivative Fractional gradient method Optimization |
description |
Motivated by the increasing of practical applications in fractional calculus, we study the classical gradient method under the perspective of the $\psi$-Hilfer derivative. This allows us to cover in our study several definitions of fractional derivatives that are found in the literature. The convergence of the $\psi$-Hilfer continuous fractional gradient method is studied both for strongly and non-strongly convex cases. Using a series representation of the target function, we develop an algorithm for the $\psi$-Hilfer fractional order gradient method. The numerical method obtained by truncating higher-order terms was tested and analyzed using benchmark functions. Considering variable order differentiation and optimizing the step size, the $\psi$-Hilfer fractional gradient method shows better results in terms of speed and accuracy. Our results generalize previous works in the literature. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-03-30T15:09:33Z 2023-03-01T00:00:00Z 2023-03 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/36752 |
url |
http://hdl.handle.net/10773/36752 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.3390/fractalfract7030275 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
MDPI |
publisher.none.fl_str_mv |
MDPI |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137728786333696 |