Fractional gradient methods via ψ-Hilfer derivative

Detalhes bibliográficos
Autor(a) principal: Vieira, N.
Data de Publicação: 2023
Outros Autores: Rodrigues, M. M., Ferreira, M.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.8/8358
Resumo: The final version is published in Fractal and Fractional, 7-No.3, (2023), Article No.275 (30pp.). It as available via the website https://www.mdpi.com/2504-3110/7/3/275
id RCAP_41321813c7ff27e97e827098465748b6
oai_identifier_str oai:iconline.ipleiria.pt:10400.8/8358
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Fractional gradient methods via ψ-Hilfer derivativeFractional calculusψ-Hilfer fractional derivativeFractional Gradient methodOptimizationThe final version is published in Fractal and Fractional, 7-No.3, (2023), Article No.275 (30pp.). It as available via the website https://www.mdpi.com/2504-3110/7/3/275Acknowledgements: The work of the authors was supported by Portuguese funds through CIDMA–Center for Research and Development in Mathematics and Applications, and FCT–Fundação para a Ciência e a Tecnologia, within projects UIDB/04106/2020 and UIDP/04106/2020. N. Vieira was also supported by FCT via the 2018 FCT program of Stimulus of Scientific Employment - Individual Support (Ref: CEECIND/01131/2018).Motivated by the increasing of practical applications in fractional calculus, we study the classical gradient method under the perspective of the ψ-Hilfer derivative. This allows us to cover in our study several definitions of fractional derivatives that are found in the literature. The convergence of the ψ-Hilfer continuous fractional gradient method is studied both for strongly and non-strongly convex cases. Using a series representation of the target function, we develop an algorithm for the ψ-Hilfer fractional order gradient method. The numerical method obtained by truncating higher-order terms was tested and analyzed using benchmark functions. Considering variable order differentiation and optimizing the step size, the ψ-Hilfer fractional gradient method shows better results in terms of speed and accuracy. Our results generalize previous works in the literature.MDPIIC-OnlineVieira, N.Rodrigues, M. M.Ferreira, M.2023-04-11T09:00:03Z2023-032023-03-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.8/8358engVieira, N., Rodrigues, M. M., & Ferreira, M. (2023). Fractional Gradient Methods via ψ-Hilfer Derivative. Fractal and Fractional, 7(3), 275. https://doi.org/10.3390/fractalfract7030275275https://doi.org/10.3390/fractalfract70302752504-3110info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-17T15:57:09Zoai:iconline.ipleiria.pt:10400.8/8358Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:51:05.802206Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Fractional gradient methods via ψ-Hilfer derivative
title Fractional gradient methods via ψ-Hilfer derivative
spellingShingle Fractional gradient methods via ψ-Hilfer derivative
Vieira, N.
Fractional calculus
ψ-Hilfer fractional derivative
Fractional Gradient method
Optimization
title_short Fractional gradient methods via ψ-Hilfer derivative
title_full Fractional gradient methods via ψ-Hilfer derivative
title_fullStr Fractional gradient methods via ψ-Hilfer derivative
title_full_unstemmed Fractional gradient methods via ψ-Hilfer derivative
title_sort Fractional gradient methods via ψ-Hilfer derivative
author Vieira, N.
author_facet Vieira, N.
Rodrigues, M. M.
Ferreira, M.
author_role author
author2 Rodrigues, M. M.
Ferreira, M.
author2_role author
author
dc.contributor.none.fl_str_mv IC-Online
dc.contributor.author.fl_str_mv Vieira, N.
Rodrigues, M. M.
Ferreira, M.
dc.subject.por.fl_str_mv Fractional calculus
ψ-Hilfer fractional derivative
Fractional Gradient method
Optimization
topic Fractional calculus
ψ-Hilfer fractional derivative
Fractional Gradient method
Optimization
description The final version is published in Fractal and Fractional, 7-No.3, (2023), Article No.275 (30pp.). It as available via the website https://www.mdpi.com/2504-3110/7/3/275
publishDate 2023
dc.date.none.fl_str_mv 2023-04-11T09:00:03Z
2023-03
2023-03-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.8/8358
url http://hdl.handle.net/10400.8/8358
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Vieira, N., Rodrigues, M. M., & Ferreira, M. (2023). Fractional Gradient Methods via ψ-Hilfer Derivative. Fractal and Fractional, 7(3), 275. https://doi.org/10.3390/fractalfract7030275
275
https://doi.org/10.3390/fractalfract7030275
2504-3110
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv MDPI
publisher.none.fl_str_mv MDPI
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137002842488832