Mathematical models for prediction of temperature effects on kinetic parameters of microorganisms’ inactivation: tools for model comparison and adequacy in data fitting

Detalhes bibliográficos
Autor(a) principal: Gil, Maria M.
Data de Publicação: 2017
Outros Autores: Miller, Fátima A., Brandão, Teresa R. S., Silva, Cristina L. M.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.14/25966
Resumo: Microbial inactivation often follows a sigmoidal kinetic behaviour, with an initial lag phase, followed by a maximum inactivation rate period and tending to a final asymptotic value. Mathematically, such tendencies may be described by using primary kinetic models (Gompertz based model is one example) that describe microbial survival throughout processing time when stressing conditions are applied. The parameters of kinetic models are directly affected by temperature. Despite the number of mathematical equations used to describe the dependence of the kinetic parameters on temperature (so-called secondary models), there is a lack of studies regarding model comparison and adequacy in data fitting. This work provides a review of mathematical models that describe the temperature dependence of kinetic parameters related to microbial thermal inactivation. Regression analysis schemes and tests seeking model comparison are presented. A case study is included to provide guidance for the assessment of secondary model adequacy and regression analyses procedures. When modelling temperature effects on sigmoidal inactivation kinetics of microorganisms, one should be aware about the regression methodology applied. The most adequate models according to the two-step regression methodology may not be the best selection if a global fit is applied.
id RCAP_065a82a800b1e5223180225b76f7697a
oai_identifier_str oai:repositorio.ucp.pt:10400.14/25966
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Mathematical models for prediction of temperature effects on kinetic parameters of microorganisms’ inactivation: tools for model comparison and adequacy in data fittingMicrobial inactivationMaximum inactivation rateShoulder parameterTemperature effectsMicrobial inactivation often follows a sigmoidal kinetic behaviour, with an initial lag phase, followed by a maximum inactivation rate period and tending to a final asymptotic value. Mathematically, such tendencies may be described by using primary kinetic models (Gompertz based model is one example) that describe microbial survival throughout processing time when stressing conditions are applied. The parameters of kinetic models are directly affected by temperature. Despite the number of mathematical equations used to describe the dependence of the kinetic parameters on temperature (so-called secondary models), there is a lack of studies regarding model comparison and adequacy in data fitting. This work provides a review of mathematical models that describe the temperature dependence of kinetic parameters related to microbial thermal inactivation. Regression analysis schemes and tests seeking model comparison are presented. A case study is included to provide guidance for the assessment of secondary model adequacy and regression analyses procedures. When modelling temperature effects on sigmoidal inactivation kinetics of microorganisms, one should be aware about the regression methodology applied. The most adequate models according to the two-step regression methodology may not be the best selection if a global fit is applied.SpringerVeritati - Repositório Institucional da Universidade Católica PortuguesaGil, Maria M.Miller, Fátima A.Brandão, Teresa R. S.Silva, Cristina L. M.2018-11-05T17:20:02Z20172017-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.14/25966engGil, M.M., Miller, F.A., Brandão, T.R.S., Silva, C.L.M. (2017). Mathematical Models for Prediction of Temperature Effects on Kinetic Parameters of Microorganisms’ Inactivation: Tools for Model Comparison and Adequacy in Data Fitting. Food and Bioprocess Technology, 10(12), 2208-22251935-513010.1007/s11947-017-1989-x1935-514985029600350000415249000010info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-09-12T01:38:41Zoai:repositorio.ucp.pt:10400.14/25966Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T18:20:44.756889Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Mathematical models for prediction of temperature effects on kinetic parameters of microorganisms’ inactivation: tools for model comparison and adequacy in data fitting
title Mathematical models for prediction of temperature effects on kinetic parameters of microorganisms’ inactivation: tools for model comparison and adequacy in data fitting
spellingShingle Mathematical models for prediction of temperature effects on kinetic parameters of microorganisms’ inactivation: tools for model comparison and adequacy in data fitting
Gil, Maria M.
Microbial inactivation
Maximum inactivation rate
Shoulder parameter
Temperature effects
title_short Mathematical models for prediction of temperature effects on kinetic parameters of microorganisms’ inactivation: tools for model comparison and adequacy in data fitting
title_full Mathematical models for prediction of temperature effects on kinetic parameters of microorganisms’ inactivation: tools for model comparison and adequacy in data fitting
title_fullStr Mathematical models for prediction of temperature effects on kinetic parameters of microorganisms’ inactivation: tools for model comparison and adequacy in data fitting
title_full_unstemmed Mathematical models for prediction of temperature effects on kinetic parameters of microorganisms’ inactivation: tools for model comparison and adequacy in data fitting
title_sort Mathematical models for prediction of temperature effects on kinetic parameters of microorganisms’ inactivation: tools for model comparison and adequacy in data fitting
author Gil, Maria M.
author_facet Gil, Maria M.
Miller, Fátima A.
Brandão, Teresa R. S.
Silva, Cristina L. M.
author_role author
author2 Miller, Fátima A.
Brandão, Teresa R. S.
Silva, Cristina L. M.
author2_role author
author
author
dc.contributor.none.fl_str_mv Veritati - Repositório Institucional da Universidade Católica Portuguesa
dc.contributor.author.fl_str_mv Gil, Maria M.
Miller, Fátima A.
Brandão, Teresa R. S.
Silva, Cristina L. M.
dc.subject.por.fl_str_mv Microbial inactivation
Maximum inactivation rate
Shoulder parameter
Temperature effects
topic Microbial inactivation
Maximum inactivation rate
Shoulder parameter
Temperature effects
description Microbial inactivation often follows a sigmoidal kinetic behaviour, with an initial lag phase, followed by a maximum inactivation rate period and tending to a final asymptotic value. Mathematically, such tendencies may be described by using primary kinetic models (Gompertz based model is one example) that describe microbial survival throughout processing time when stressing conditions are applied. The parameters of kinetic models are directly affected by temperature. Despite the number of mathematical equations used to describe the dependence of the kinetic parameters on temperature (so-called secondary models), there is a lack of studies regarding model comparison and adequacy in data fitting. This work provides a review of mathematical models that describe the temperature dependence of kinetic parameters related to microbial thermal inactivation. Regression analysis schemes and tests seeking model comparison are presented. A case study is included to provide guidance for the assessment of secondary model adequacy and regression analyses procedures. When modelling temperature effects on sigmoidal inactivation kinetics of microorganisms, one should be aware about the regression methodology applied. The most adequate models according to the two-step regression methodology may not be the best selection if a global fit is applied.
publishDate 2017
dc.date.none.fl_str_mv 2017
2017-01-01T00:00:00Z
2018-11-05T17:20:02Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.14/25966
url http://hdl.handle.net/10400.14/25966
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Gil, M.M., Miller, F.A., Brandão, T.R.S., Silva, C.L.M. (2017). Mathematical Models for Prediction of Temperature Effects on Kinetic Parameters of Microorganisms’ Inactivation: Tools for Model Comparison and Adequacy in Data Fitting. Food and Bioprocess Technology, 10(12), 2208-2225
1935-5130
10.1007/s11947-017-1989-x
1935-5149
85029600350
000415249000010
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799131905817313280