Trigonometric transform splitting methods for real symmetric Toeplitz systems
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/1822/54634 |
Resumo: | In this paper, we study efficient iterative methods for real symmetric Toeplitz systems based on the trigonometric transformation splitting (TTS) of the real symmetric Toeplitz matrix A. Theoretical analyses show that if the generating function f of the n × n Toeplitz matrix A is a real positive even function, then the TTS iterative methods converge to the unique solution of the linear system of equations for sufficient large n. Moreover, we derive an upper bound of the contraction factor of the TTS iteration which is dependent solely on the spectra of the two TTS matrices involved. Different from the CSCS iterative method in Ng (2003) in which all operations counts concern complex operations when the DFTs are employed, even if the Toeplitz matrix A is real and symmetric, our method only involves real arithmetics when the DCTs and DSTs are used. The numerical experiments show that our method works better than CSCS iterative method and much better than the positive definite and skew-symmetric splitting (PSS) iterative method in Bai et al. (2005) and the symmetric Gauss–Seidel (SGS) iterative method. |
id |
RCAP_0771ca2ee417a45bd482b670792088a9 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/54634 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Trigonometric transform splitting methods for real symmetric Toeplitz systemsSine transformCosine transformMatrix splitting Iterative methodsReal Toeplitz matricesIterative methodsMatrix splittingCiências Naturais::MatemáticasScience & TechnologyIn this paper, we study efficient iterative methods for real symmetric Toeplitz systems based on the trigonometric transformation splitting (TTS) of the real symmetric Toeplitz matrix A. Theoretical analyses show that if the generating function f of the n × n Toeplitz matrix A is a real positive even function, then the TTS iterative methods converge to the unique solution of the linear system of equations for sufficient large n. Moreover, we derive an upper bound of the contraction factor of the TTS iteration which is dependent solely on the spectra of the two TTS matrices involved. Different from the CSCS iterative method in Ng (2003) in which all operations counts concern complex operations when the DFTs are employed, even if the Toeplitz matrix A is real and symmetric, our method only involves real arithmetics when the DCTs and DSTs are used. The numerical experiments show that our method works better than CSCS iterative method and much better than the positive definite and skew-symmetric splitting (PSS) iterative method in Bai et al. (2005) and the symmetric Gauss–Seidel (SGS) iterative method.National Natural Science Foundation of China under Grant No. 11371075info:eu-repo/semantics/publishedVersionElsevierUniversidade do MinhoZhongyun LiuNianci WuXiaorong QinZhang, Yulin20182018-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/54634eng0898-122110.1016/j.camwa.2018.01.008www.elsevier.com/locate/camwainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:37:10Zoai:repositorium.sdum.uminho.pt:1822/54634Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:33:25.538729Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Trigonometric transform splitting methods for real symmetric Toeplitz systems |
title |
Trigonometric transform splitting methods for real symmetric Toeplitz systems |
spellingShingle |
Trigonometric transform splitting methods for real symmetric Toeplitz systems Zhongyun Liu Sine transform Cosine transform Matrix splitting Iterative methods Real Toeplitz matrices Iterative methods Matrix splitting Ciências Naturais::Matemáticas Science & Technology |
title_short |
Trigonometric transform splitting methods for real symmetric Toeplitz systems |
title_full |
Trigonometric transform splitting methods for real symmetric Toeplitz systems |
title_fullStr |
Trigonometric transform splitting methods for real symmetric Toeplitz systems |
title_full_unstemmed |
Trigonometric transform splitting methods for real symmetric Toeplitz systems |
title_sort |
Trigonometric transform splitting methods for real symmetric Toeplitz systems |
author |
Zhongyun Liu |
author_facet |
Zhongyun Liu Nianci Wu Xiaorong Qin Zhang, Yulin |
author_role |
author |
author2 |
Nianci Wu Xiaorong Qin Zhang, Yulin |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Zhongyun Liu Nianci Wu Xiaorong Qin Zhang, Yulin |
dc.subject.por.fl_str_mv |
Sine transform Cosine transform Matrix splitting Iterative methods Real Toeplitz matrices Iterative methods Matrix splitting Ciências Naturais::Matemáticas Science & Technology |
topic |
Sine transform Cosine transform Matrix splitting Iterative methods Real Toeplitz matrices Iterative methods Matrix splitting Ciências Naturais::Matemáticas Science & Technology |
description |
In this paper, we study efficient iterative methods for real symmetric Toeplitz systems based on the trigonometric transformation splitting (TTS) of the real symmetric Toeplitz matrix A. Theoretical analyses show that if the generating function f of the n × n Toeplitz matrix A is a real positive even function, then the TTS iterative methods converge to the unique solution of the linear system of equations for sufficient large n. Moreover, we derive an upper bound of the contraction factor of the TTS iteration which is dependent solely on the spectra of the two TTS matrices involved. Different from the CSCS iterative method in Ng (2003) in which all operations counts concern complex operations when the DFTs are employed, even if the Toeplitz matrix A is real and symmetric, our method only involves real arithmetics when the DCTs and DSTs are used. The numerical experiments show that our method works better than CSCS iterative method and much better than the positive definite and skew-symmetric splitting (PSS) iterative method in Bai et al. (2005) and the symmetric Gauss–Seidel (SGS) iterative method. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018 2018-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/54634 |
url |
http://hdl.handle.net/1822/54634 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0898-1221 10.1016/j.camwa.2018.01.008 www.elsevier.com/locate/camwa |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799132851673759744 |