Stationary splitting iterative methods for the matrix equation AX B = C
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/1822/68183 |
Resumo: | Stationary splitting iterative methods for solving AXB = Care considered in this paper. The main tool to derive our new method is the induced splitting of a given nonsingular matrix A = M −N by a matrix H such that (I −H) invertible. Convergence properties of the proposed method are discussed and numerical experiments are presented to illustrate its computational efficiency and the effectiveness of some preconditioned variants. In particular, for certain surface fitting applications, our method is much more efficient than the progressive iterative approximation (PIA), a conventional iterative method often used in computer-aided geometric design (CAGD). |
id |
RCAP_b76f72b0046ca9032bcd768197538402 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/68183 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Stationary splitting iterative methods for the matrix equation AX B = CHermitian positive definiteH-matricesStationary splitting iterationInduced splittingCurves fittingCiências Naturais::MatemáticasScience & TechnologyStationary splitting iterative methods for solving AXB = Care considered in this paper. The main tool to derive our new method is the induced splitting of a given nonsingular matrix A = M −N by a matrix H such that (I −H) invertible. Convergence properties of the proposed method are discussed and numerical experiments are presented to illustrate its computational efficiency and the effectiveness of some preconditioned variants. In particular, for certain surface fitting applications, our method is much more efficient than the progressive iterative approximation (PIA), a conventional iterative method often used in computer-aided geometric design (CAGD).The authors would like to thank the supports of the National Natural Science Foundation of China under Grant No. 11371075, the Hunan Key Laboratory of mathematical modeling and analysis in engineering, and the Portuguese Funds through FCT–Fundação para a Ciência e a Tecnologia, within the Project UID/MAT/00013/2013.ElsevierUniversidade do MinhoLiu, ZhongyunLi, ZhenFerreira, CarlaZhang, Yulin20202020-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/68183eng0096-300310.1016/j.amc.2020.125195https://www.sciencedirect.com/science/article/abs/pii/S0096300320301648info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:15:55Zoai:repositorium.sdum.uminho.pt:1822/68183Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:08:27.511163Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Stationary splitting iterative methods for the matrix equation AX B = C |
title |
Stationary splitting iterative methods for the matrix equation AX B = C |
spellingShingle |
Stationary splitting iterative methods for the matrix equation AX B = C Liu, Zhongyun Hermitian positive definite H-matrices Stationary splitting iteration Induced splitting Curves fitting Ciências Naturais::Matemáticas Science & Technology |
title_short |
Stationary splitting iterative methods for the matrix equation AX B = C |
title_full |
Stationary splitting iterative methods for the matrix equation AX B = C |
title_fullStr |
Stationary splitting iterative methods for the matrix equation AX B = C |
title_full_unstemmed |
Stationary splitting iterative methods for the matrix equation AX B = C |
title_sort |
Stationary splitting iterative methods for the matrix equation AX B = C |
author |
Liu, Zhongyun |
author_facet |
Liu, Zhongyun Li, Zhen Ferreira, Carla Zhang, Yulin |
author_role |
author |
author2 |
Li, Zhen Ferreira, Carla Zhang, Yulin |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Liu, Zhongyun Li, Zhen Ferreira, Carla Zhang, Yulin |
dc.subject.por.fl_str_mv |
Hermitian positive definite H-matrices Stationary splitting iteration Induced splitting Curves fitting Ciências Naturais::Matemáticas Science & Technology |
topic |
Hermitian positive definite H-matrices Stationary splitting iteration Induced splitting Curves fitting Ciências Naturais::Matemáticas Science & Technology |
description |
Stationary splitting iterative methods for solving AXB = Care considered in this paper. The main tool to derive our new method is the induced splitting of a given nonsingular matrix A = M −N by a matrix H such that (I −H) invertible. Convergence properties of the proposed method are discussed and numerical experiments are presented to illustrate its computational efficiency and the effectiveness of some preconditioned variants. In particular, for certain surface fitting applications, our method is much more efficient than the progressive iterative approximation (PIA), a conventional iterative method often used in computer-aided geometric design (CAGD). |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020 2020-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/68183 |
url |
http://hdl.handle.net/1822/68183 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0096-3003 10.1016/j.amc.2020.125195 https://www.sciencedirect.com/science/article/abs/pii/S0096300320301648 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799132506760413184 |