Dynamic aperiodic neural network for time series prediction
Autor(a) principal: | |
---|---|
Data de Publicação: | 2007 |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.5/10013 |
Resumo: | There are many things that humans find easy to do that computers are currently unable to do. Tasks such as visual pattern manipulating objects by touch, and navigating in a complex world are easy for humans. Yet, despite decades of research, we have no viable algorithms for performing these and other cognitive functions on a computer. In this study, we used a bio-inspired neural network called a KA set neural network to perform a time series predictive task. The results from our experiments showed that the predictive accuracy with this method was better in most markets than results obtained using a random walk method. |
id |
RCAP_07c7aeae5868ec7c40a8f7bc928bc5fc |
---|---|
oai_identifier_str |
oai:www.repository.utl.pt:10400.5/10013 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Dynamic aperiodic neural network for time series predictionKset neural networkTime seriesPredictionThere are many things that humans find easy to do that computers are currently unable to do. Tasks such as visual pattern manipulating objects by touch, and navigating in a complex world are easy for humans. Yet, despite decades of research, we have no viable algorithms for performing these and other cognitive functions on a computer. In this study, we used a bio-inspired neural network called a KA set neural network to perform a time series predictive task. The results from our experiments showed that the predictive accuracy with this method was better in most markets than results obtained using a random walk method.Instituto Superior de Economia e GestãoRepositório da Universidade de LisboaChiu-Che, Tseng2015-11-03T11:38:40Z20072007-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.5/10013engChiu-Che, Tseng (2007). "Dynamic aperiodic neural network for time series prediction". Portuguese Journal of Management Studies, XII(2):99-114info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-06T14:40:24Zoai:www.repository.utl.pt:10400.5/10013Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T16:56:33.438472Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Dynamic aperiodic neural network for time series prediction |
title |
Dynamic aperiodic neural network for time series prediction |
spellingShingle |
Dynamic aperiodic neural network for time series prediction Chiu-Che, Tseng Kset neural network Time series Prediction |
title_short |
Dynamic aperiodic neural network for time series prediction |
title_full |
Dynamic aperiodic neural network for time series prediction |
title_fullStr |
Dynamic aperiodic neural network for time series prediction |
title_full_unstemmed |
Dynamic aperiodic neural network for time series prediction |
title_sort |
Dynamic aperiodic neural network for time series prediction |
author |
Chiu-Che, Tseng |
author_facet |
Chiu-Che, Tseng |
author_role |
author |
dc.contributor.none.fl_str_mv |
Repositório da Universidade de Lisboa |
dc.contributor.author.fl_str_mv |
Chiu-Che, Tseng |
dc.subject.por.fl_str_mv |
Kset neural network Time series Prediction |
topic |
Kset neural network Time series Prediction |
description |
There are many things that humans find easy to do that computers are currently unable to do. Tasks such as visual pattern manipulating objects by touch, and navigating in a complex world are easy for humans. Yet, despite decades of research, we have no viable algorithms for performing these and other cognitive functions on a computer. In this study, we used a bio-inspired neural network called a KA set neural network to perform a time series predictive task. The results from our experiments showed that the predictive accuracy with this method was better in most markets than results obtained using a random walk method. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007 2007-01-01T00:00:00Z 2015-11-03T11:38:40Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.5/10013 |
url |
http://hdl.handle.net/10400.5/10013 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Chiu-Che, Tseng (2007). "Dynamic aperiodic neural network for time series prediction". Portuguese Journal of Management Studies, XII(2):99-114 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Instituto Superior de Economia e Gestão |
publisher.none.fl_str_mv |
Instituto Superior de Economia e Gestão |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799131047888158720 |