Forecasting energy time-series data using a fuzzy ARTMAP neural network
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1109/ICPEI49860.2020.9431435 http://hdl.handle.net/11449/221765 |
Resumo: | Time-series forecasting is an important field of machine learning and is fundamental in analyzing trends based on historical data from various sources. In this paper, a fuzzy ARTMAP neural network for time-series forecasting is presented. To validate the proposed system, two energy-related datasets from Great Britain were selected. With a promising processing time and accuracy as good as a traditional machine learning algorithm, the fuzzy ARTMAP neural network has shown that can be a good option to perform forecasting considering different time-based data issues. |
id |
UNSP_ccb2aca071cb395331c7dc9b3017e15f |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/221765 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Forecasting energy time-series data using a fuzzy ARTMAP neural networkenergy datafuzzy ARTMAP neural networktime-series forecastingTime-series forecasting is an important field of machine learning and is fundamental in analyzing trends based on historical data from various sources. In this paper, a fuzzy ARTMAP neural network for time-series forecasting is presented. To validate the proposed system, two energy-related datasets from Great Britain were selected. With a promising processing time and accuracy as good as a traditional machine learning algorithm, the fuzzy ARTMAP neural network has shown that can be a good option to perform forecasting considering different time-based data issues.Universidade Estadual Paulista Faculdade de EngenhariaUniversity of Limerick Department of Electronic and Computer EngineeringUniversidade Estadual Paulista Faculdade de EngenhariaUniversidade Estadual Paulista (UNESP)University of LimerickDe Assis Pedrobon Ferreira, Willian [UNESP]Grout, IanDa Silva, Alexandre Cesar Rodrigues [UNESP]2022-04-28T19:40:18Z2022-04-28T19:40:18Z2020-10-14info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject1-4http://dx.doi.org/10.1109/ICPEI49860.2020.9431435Proceedings of the 2020 International Conference on Power, Energy and Innovations, ICPEI 2020, p. 1-4.http://hdl.handle.net/11449/22176510.1109/ICPEI49860.2020.94314352-s2.0-85107270887Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengProceedings of the 2020 International Conference on Power, Energy and Innovations, ICPEI 2020info:eu-repo/semantics/openAccess2022-04-28T19:40:18Zoai:repositorio.unesp.br:11449/221765Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T18:59:40.556021Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Forecasting energy time-series data using a fuzzy ARTMAP neural network |
title |
Forecasting energy time-series data using a fuzzy ARTMAP neural network |
spellingShingle |
Forecasting energy time-series data using a fuzzy ARTMAP neural network De Assis Pedrobon Ferreira, Willian [UNESP] energy data fuzzy ARTMAP neural network time-series forecasting |
title_short |
Forecasting energy time-series data using a fuzzy ARTMAP neural network |
title_full |
Forecasting energy time-series data using a fuzzy ARTMAP neural network |
title_fullStr |
Forecasting energy time-series data using a fuzzy ARTMAP neural network |
title_full_unstemmed |
Forecasting energy time-series data using a fuzzy ARTMAP neural network |
title_sort |
Forecasting energy time-series data using a fuzzy ARTMAP neural network |
author |
De Assis Pedrobon Ferreira, Willian [UNESP] |
author_facet |
De Assis Pedrobon Ferreira, Willian [UNESP] Grout, Ian Da Silva, Alexandre Cesar Rodrigues [UNESP] |
author_role |
author |
author2 |
Grout, Ian Da Silva, Alexandre Cesar Rodrigues [UNESP] |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (UNESP) University of Limerick |
dc.contributor.author.fl_str_mv |
De Assis Pedrobon Ferreira, Willian [UNESP] Grout, Ian Da Silva, Alexandre Cesar Rodrigues [UNESP] |
dc.subject.por.fl_str_mv |
energy data fuzzy ARTMAP neural network time-series forecasting |
topic |
energy data fuzzy ARTMAP neural network time-series forecasting |
description |
Time-series forecasting is an important field of machine learning and is fundamental in analyzing trends based on historical data from various sources. In this paper, a fuzzy ARTMAP neural network for time-series forecasting is presented. To validate the proposed system, two energy-related datasets from Great Britain were selected. With a promising processing time and accuracy as good as a traditional machine learning algorithm, the fuzzy ARTMAP neural network has shown that can be a good option to perform forecasting considering different time-based data issues. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-10-14 2022-04-28T19:40:18Z 2022-04-28T19:40:18Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1109/ICPEI49860.2020.9431435 Proceedings of the 2020 International Conference on Power, Energy and Innovations, ICPEI 2020, p. 1-4. http://hdl.handle.net/11449/221765 10.1109/ICPEI49860.2020.9431435 2-s2.0-85107270887 |
url |
http://dx.doi.org/10.1109/ICPEI49860.2020.9431435 http://hdl.handle.net/11449/221765 |
identifier_str_mv |
Proceedings of the 2020 International Conference on Power, Energy and Innovations, ICPEI 2020, p. 1-4. 10.1109/ICPEI49860.2020.9431435 2-s2.0-85107270887 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Proceedings of the 2020 International Conference on Power, Energy and Innovations, ICPEI 2020 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
1-4 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129009970577408 |