Machine Learning in Audit of Operations: Predicting the Error Rate of European Funds
Autor(a) principal: | |
---|---|
Data de Publicação: | 2024 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/163939 |
Resumo: | Dissertation presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics, specialization in Business Analytics |
id |
RCAP_090d8b32bc8c3ec028af44ebfa53ff56 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/163939 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Machine Learning in Audit of Operations: Predicting the Error Rate of European FundsOperational AuditsMonetary Unit SamplingMachine LearningSupervised Regression AlgorithmsSDG 16 - Peace, justice and strong institutionsDomínio/Área Científica::Ciências Naturais::Ciências da Computação e da InformaçãoDissertation presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics, specialization in Business AnalyticsIn the field of auditing of operations, to assess error rates for Book Values (BV) in a European funds population, Monetary Unit Sampling (MUS), a widely used sampling methodology, enables auditors to extrapolate about the population being materially misstated. The thesis delved into the potential of incorporating supervised Machine Learning (ML) regression models to innovate how error rates are identified in European funds, given the limited exploration of ML’s effectiveness in auditing. Likewise, the study focused on showcasing the capability of predicted error rates align closely with the true misstatement values operations, previously selected through MUS sampling method. A pure model-based conceptual framework approach was developed introducing supervised ML regression models, including tree-based algorithms, such as Decision Trees, eXtreme Gradient Boosting, Categorical Boosting and Random Forest Quantile, and the Multilayer Perceptron algorithm. Additionally, Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) metrics, data visualization tools and Repeated Stratified Cross-Validation were used for models’ assessment. Furthermore, data samples were provided by the IGF entity, from training, validation and testing purposes. Results exhibited the proficiency of ML algorithms in predicting specific pattern performances although generalization across error rates remained a challenge. This advancement sets the stage for moving beyond standard the standard MUS method towards Artificial Intelligence (AI) applications in audit of operations.Coelho, Pedro Miguel Pereira SimõesRUNSilva, Sara Filipa Santos Pereira Fernandes da2024-02-22T17:15:14Z2024-01-302024-01-30T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/163939TID:203526759enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:49:46Zoai:run.unl.pt:10362/163939Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:59:57.040013Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Machine Learning in Audit of Operations: Predicting the Error Rate of European Funds |
title |
Machine Learning in Audit of Operations: Predicting the Error Rate of European Funds |
spellingShingle |
Machine Learning in Audit of Operations: Predicting the Error Rate of European Funds Silva, Sara Filipa Santos Pereira Fernandes da Operational Audits Monetary Unit Sampling Machine Learning Supervised Regression Algorithms SDG 16 - Peace, justice and strong institutions Domínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informação |
title_short |
Machine Learning in Audit of Operations: Predicting the Error Rate of European Funds |
title_full |
Machine Learning in Audit of Operations: Predicting the Error Rate of European Funds |
title_fullStr |
Machine Learning in Audit of Operations: Predicting the Error Rate of European Funds |
title_full_unstemmed |
Machine Learning in Audit of Operations: Predicting the Error Rate of European Funds |
title_sort |
Machine Learning in Audit of Operations: Predicting the Error Rate of European Funds |
author |
Silva, Sara Filipa Santos Pereira Fernandes da |
author_facet |
Silva, Sara Filipa Santos Pereira Fernandes da |
author_role |
author |
dc.contributor.none.fl_str_mv |
Coelho, Pedro Miguel Pereira Simões RUN |
dc.contributor.author.fl_str_mv |
Silva, Sara Filipa Santos Pereira Fernandes da |
dc.subject.por.fl_str_mv |
Operational Audits Monetary Unit Sampling Machine Learning Supervised Regression Algorithms SDG 16 - Peace, justice and strong institutions Domínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informação |
topic |
Operational Audits Monetary Unit Sampling Machine Learning Supervised Regression Algorithms SDG 16 - Peace, justice and strong institutions Domínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informação |
description |
Dissertation presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics, specialization in Business Analytics |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-02-22T17:15:14Z 2024-01-30 2024-01-30T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/163939 TID:203526759 |
url |
http://hdl.handle.net/10362/163939 |
identifier_str_mv |
TID:203526759 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138175881314304 |