Automatic modeling of pectus excavatum corrective prosthesis using artificial neural networks

Detalhes bibliográficos
Autor(a) principal: Rodrigues, Pedro L.
Data de Publicação: 2014
Outros Autores: Rodrigues, Nuno F., Pinho, ACM, Fonseca, Jaime C., Correia-Pinto, Jorge, Vilaça, João L.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/11110/686
Resumo: Pectus excavatum is the most common deformity of the thorax. Pre-operative diagnosis usually includes Computed Tomography (CT) to successfully employ a thoracic prosthesis for anterior chest wall remodeling. Aiming at the elimination of radiation exposure, this paper presents a novel methodology for the replacement of CT by a 3D laser scanner (radiation-free) for prosthesis modeling. The complete elimination of CT is based on an accurate determination of ribs position and prosthesis placement region through skin surface points. The developed solution resorts to a normalized and combined outcome of an artificial neural network (ANN) set. Each ANN model was trained with data vectors from 165 male patients and using soft tissue thicknesses (STT) comprising information from the skin and rib cage (automatically determined by image processing algorithms). Tests revealed that ribs position for prosthesis placement and modeling can be estimated with an average error of 5.0 ± 3.6 mm. One also showed that the ANN performance can be improved by introducing a manually determined initial STT value in the ANN normalization procedure (average error of 2.82 ± 0.76 mm). Such error range is well below current prosthesis manual modeling (approximately 11 mm), which can provide a valuable and radiation-free procedure for prosthesis personalization.
id RCAP_0975c0518a2dbf01db4a2625c28406fd
oai_identifier_str oai:ciencipca.ipca.pt:11110/686
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Automatic modeling of pectus excavatum corrective prosthesis using artificial neural networksPectus excavatumArtificial neural networksImage segmentationProsthesis modellingPectus excavatum is the most common deformity of the thorax. Pre-operative diagnosis usually includes Computed Tomography (CT) to successfully employ a thoracic prosthesis for anterior chest wall remodeling. Aiming at the elimination of radiation exposure, this paper presents a novel methodology for the replacement of CT by a 3D laser scanner (radiation-free) for prosthesis modeling. The complete elimination of CT is based on an accurate determination of ribs position and prosthesis placement region through skin surface points. The developed solution resorts to a normalized and combined outcome of an artificial neural network (ANN) set. Each ANN model was trained with data vectors from 165 male patients and using soft tissue thicknesses (STT) comprising information from the skin and rib cage (automatically determined by image processing algorithms). Tests revealed that ribs position for prosthesis placement and modeling can be estimated with an average error of 5.0 ± 3.6 mm. One also showed that the ANN performance can be improved by introducing a manually determined initial STT value in the ANN normalization procedure (average error of 2.82 ± 0.76 mm). Such error range is well below current prosthesis manual modeling (approximately 11 mm), which can provide a valuable and radiation-free procedure for prosthesis personalization.Medical Engineering & Physics2014-09-11T12:14:59Z2014-09-11T12:14:59Z2014-08-06T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/11110/686oai:ciencipca.ipca.pt:11110/686eng1350-4533http://hdl.handle.net/11110/686Rodrigues, Pedro L.Rodrigues, Nuno F.Pinho, ACMFonseca, Jaime C.Correia-Pinto, JorgeVilaça, João L.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2022-09-05T12:52:15Zoai:ciencipca.ipca.pt:11110/686Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T15:01:08.386525Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Automatic modeling of pectus excavatum corrective prosthesis using artificial neural networks
title Automatic modeling of pectus excavatum corrective prosthesis using artificial neural networks
spellingShingle Automatic modeling of pectus excavatum corrective prosthesis using artificial neural networks
Rodrigues, Pedro L.
Pectus excavatum
Artificial neural networks
Image segmentation
Prosthesis modelling
title_short Automatic modeling of pectus excavatum corrective prosthesis using artificial neural networks
title_full Automatic modeling of pectus excavatum corrective prosthesis using artificial neural networks
title_fullStr Automatic modeling of pectus excavatum corrective prosthesis using artificial neural networks
title_full_unstemmed Automatic modeling of pectus excavatum corrective prosthesis using artificial neural networks
title_sort Automatic modeling of pectus excavatum corrective prosthesis using artificial neural networks
author Rodrigues, Pedro L.
author_facet Rodrigues, Pedro L.
Rodrigues, Nuno F.
Pinho, ACM
Fonseca, Jaime C.
Correia-Pinto, Jorge
Vilaça, João L.
author_role author
author2 Rodrigues, Nuno F.
Pinho, ACM
Fonseca, Jaime C.
Correia-Pinto, Jorge
Vilaça, João L.
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Rodrigues, Pedro L.
Rodrigues, Nuno F.
Pinho, ACM
Fonseca, Jaime C.
Correia-Pinto, Jorge
Vilaça, João L.
dc.subject.por.fl_str_mv Pectus excavatum
Artificial neural networks
Image segmentation
Prosthesis modelling
topic Pectus excavatum
Artificial neural networks
Image segmentation
Prosthesis modelling
description Pectus excavatum is the most common deformity of the thorax. Pre-operative diagnosis usually includes Computed Tomography (CT) to successfully employ a thoracic prosthesis for anterior chest wall remodeling. Aiming at the elimination of radiation exposure, this paper presents a novel methodology for the replacement of CT by a 3D laser scanner (radiation-free) for prosthesis modeling. The complete elimination of CT is based on an accurate determination of ribs position and prosthesis placement region through skin surface points. The developed solution resorts to a normalized and combined outcome of an artificial neural network (ANN) set. Each ANN model was trained with data vectors from 165 male patients and using soft tissue thicknesses (STT) comprising information from the skin and rib cage (automatically determined by image processing algorithms). Tests revealed that ribs position for prosthesis placement and modeling can be estimated with an average error of 5.0 ± 3.6 mm. One also showed that the ANN performance can be improved by introducing a manually determined initial STT value in the ANN normalization procedure (average error of 2.82 ± 0.76 mm). Such error range is well below current prosthesis manual modeling (approximately 11 mm), which can provide a valuable and radiation-free procedure for prosthesis personalization.
publishDate 2014
dc.date.none.fl_str_mv 2014-09-11T12:14:59Z
2014-09-11T12:14:59Z
2014-08-06T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/11110/686
oai:ciencipca.ipca.pt:11110/686
url http://hdl.handle.net/11110/686
identifier_str_mv oai:ciencipca.ipca.pt:11110/686
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1350-4533
http://hdl.handle.net/11110/686
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Medical Engineering & Physics
publisher.none.fl_str_mv Medical Engineering & Physics
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799129880909053952