Automatic modeling of pectus excavatum corrective prosthesis using artificial neural networks

Detalhes bibliográficos
Autor(a) principal: Rodrigues, Pedro L.
Data de Publicação: 2014
Outros Autores: Rodrigues, Nuno F., Pinho, A. C. Marques de, Fonseca, Jaime C., Pinto, Jorge Correia, Vilaça, João L.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/1822/32918
Resumo: Pectus excavatum is the most common deformity of the thorax. Pre-operative diagnosis usually includes Computed Tomography (CT) to successfully employ a thoracic prosthesis for anterior chest wall remodeling. Aiming at the elimination of radiation exposure, this paper presents a novel methodology for the replacement of CT by a 3D laser scanner (radiation-free) for prosthesis modeling. The complete elimination of CT is based on an accurate determination of ribs position and prosthesis placement region through skin surface points. The developed solution resorts to a normalized and combined outcome of an artificial neural network (ANN) set. Each ANN model was trained with data vectors from 165 male patients and using soft tissue thicknesses (STT) comprising information from the skin and rib cage (automatically determined by image processing algorithms). Tests revealed that ribs position for prosthesis placement and modeling can be estimated with an average error of 5.0±3.6mm. One also showed that the ANN performance can be improved by introducing a manually determined initial STT value in the ANN normalization procedure (average error of 2.82±0.76mm). Such error range is well below current prosthesis manual modeling (approximately 11mm), which can provide a valuable and radiation-free procedure for prosthesis personalization.
id RCAP_404782449d8c73fa8f8bd24ac2114f2a
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/32918
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Automatic modeling of pectus excavatum corrective prosthesis using artificial neural networksPectus excavatumArtificial neural networksImage segmentationProsthesis 45 modellingProsthesis modellingScience & TechnologyPectus excavatum is the most common deformity of the thorax. Pre-operative diagnosis usually includes Computed Tomography (CT) to successfully employ a thoracic prosthesis for anterior chest wall remodeling. Aiming at the elimination of radiation exposure, this paper presents a novel methodology for the replacement of CT by a 3D laser scanner (radiation-free) for prosthesis modeling. The complete elimination of CT is based on an accurate determination of ribs position and prosthesis placement region through skin surface points. The developed solution resorts to a normalized and combined outcome of an artificial neural network (ANN) set. Each ANN model was trained with data vectors from 165 male patients and using soft tissue thicknesses (STT) comprising information from the skin and rib cage (automatically determined by image processing algorithms). Tests revealed that ribs position for prosthesis placement and modeling can be estimated with an average error of 5.0±3.6mm. One also showed that the ANN performance can be improved by introducing a manually determined initial STT value in the ANN normalization procedure (average error of 2.82±0.76mm). Such error range is well below current prosthesis manual modeling (approximately 11mm), which can provide a valuable and radiation-free procedure for prosthesis personalization.The authors acknowledge to Foundation for Science and Technology (FCT)-Portugal for the fellowships with references: SFRH/BD/74276/2010 and PTDC/SAU-BEB/103368/2008.ElsevierUniversidade do MinhoRodrigues, Pedro L.Rodrigues, Nuno F.Pinho, A. C. Marques deFonseca, Jaime C.Pinto, Jorge CorreiaVilaça, João L.20142014-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/32918eng1350-453310.1016/j.medengphy.2014.06.02025070021http://www.sciencedirect.com/science/article/pii/S1350453314001799info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:50:27Zoai:repositorium.sdum.uminho.pt:1822/32918Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:49:10.180082Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Automatic modeling of pectus excavatum corrective prosthesis using artificial neural networks
title Automatic modeling of pectus excavatum corrective prosthesis using artificial neural networks
spellingShingle Automatic modeling of pectus excavatum corrective prosthesis using artificial neural networks
Rodrigues, Pedro L.
Pectus excavatum
Artificial neural networks
Image segmentation
Prosthesis 45 modelling
Prosthesis modelling
Science & Technology
title_short Automatic modeling of pectus excavatum corrective prosthesis using artificial neural networks
title_full Automatic modeling of pectus excavatum corrective prosthesis using artificial neural networks
title_fullStr Automatic modeling of pectus excavatum corrective prosthesis using artificial neural networks
title_full_unstemmed Automatic modeling of pectus excavatum corrective prosthesis using artificial neural networks
title_sort Automatic modeling of pectus excavatum corrective prosthesis using artificial neural networks
author Rodrigues, Pedro L.
author_facet Rodrigues, Pedro L.
Rodrigues, Nuno F.
Pinho, A. C. Marques de
Fonseca, Jaime C.
Pinto, Jorge Correia
Vilaça, João L.
author_role author
author2 Rodrigues, Nuno F.
Pinho, A. C. Marques de
Fonseca, Jaime C.
Pinto, Jorge Correia
Vilaça, João L.
author2_role author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Rodrigues, Pedro L.
Rodrigues, Nuno F.
Pinho, A. C. Marques de
Fonseca, Jaime C.
Pinto, Jorge Correia
Vilaça, João L.
dc.subject.por.fl_str_mv Pectus excavatum
Artificial neural networks
Image segmentation
Prosthesis 45 modelling
Prosthesis modelling
Science & Technology
topic Pectus excavatum
Artificial neural networks
Image segmentation
Prosthesis 45 modelling
Prosthesis modelling
Science & Technology
description Pectus excavatum is the most common deformity of the thorax. Pre-operative diagnosis usually includes Computed Tomography (CT) to successfully employ a thoracic prosthesis for anterior chest wall remodeling. Aiming at the elimination of radiation exposure, this paper presents a novel methodology for the replacement of CT by a 3D laser scanner (radiation-free) for prosthesis modeling. The complete elimination of CT is based on an accurate determination of ribs position and prosthesis placement region through skin surface points. The developed solution resorts to a normalized and combined outcome of an artificial neural network (ANN) set. Each ANN model was trained with data vectors from 165 male patients and using soft tissue thicknesses (STT) comprising information from the skin and rib cage (automatically determined by image processing algorithms). Tests revealed that ribs position for prosthesis placement and modeling can be estimated with an average error of 5.0±3.6mm. One also showed that the ANN performance can be improved by introducing a manually determined initial STT value in the ANN normalization procedure (average error of 2.82±0.76mm). Such error range is well below current prosthesis manual modeling (approximately 11mm), which can provide a valuable and radiation-free procedure for prosthesis personalization.
publishDate 2014
dc.date.none.fl_str_mv 2014
2014-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/32918
url http://hdl.handle.net/1822/32918
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1350-4533
10.1016/j.medengphy.2014.06.020
25070021
http://www.sciencedirect.com/science/article/pii/S1350453314001799
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133071658713088