Automatic modeling of pectus excavatum corrective prosthesis using artificial neural networks
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/1822/32918 |
Resumo: | Pectus excavatum is the most common deformity of the thorax. Pre-operative diagnosis usually includes Computed Tomography (CT) to successfully employ a thoracic prosthesis for anterior chest wall remodeling. Aiming at the elimination of radiation exposure, this paper presents a novel methodology for the replacement of CT by a 3D laser scanner (radiation-free) for prosthesis modeling. The complete elimination of CT is based on an accurate determination of ribs position and prosthesis placement region through skin surface points. The developed solution resorts to a normalized and combined outcome of an artificial neural network (ANN) set. Each ANN model was trained with data vectors from 165 male patients and using soft tissue thicknesses (STT) comprising information from the skin and rib cage (automatically determined by image processing algorithms). Tests revealed that ribs position for prosthesis placement and modeling can be estimated with an average error of 5.0±3.6mm. One also showed that the ANN performance can be improved by introducing a manually determined initial STT value in the ANN normalization procedure (average error of 2.82±0.76mm). Such error range is well below current prosthesis manual modeling (approximately 11mm), which can provide a valuable and radiation-free procedure for prosthesis personalization. |
id |
RCAP_404782449d8c73fa8f8bd24ac2114f2a |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/32918 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Automatic modeling of pectus excavatum corrective prosthesis using artificial neural networksPectus excavatumArtificial neural networksImage segmentationProsthesis 45 modellingProsthesis modellingScience & TechnologyPectus excavatum is the most common deformity of the thorax. Pre-operative diagnosis usually includes Computed Tomography (CT) to successfully employ a thoracic prosthesis for anterior chest wall remodeling. Aiming at the elimination of radiation exposure, this paper presents a novel methodology for the replacement of CT by a 3D laser scanner (radiation-free) for prosthesis modeling. The complete elimination of CT is based on an accurate determination of ribs position and prosthesis placement region through skin surface points. The developed solution resorts to a normalized and combined outcome of an artificial neural network (ANN) set. Each ANN model was trained with data vectors from 165 male patients and using soft tissue thicknesses (STT) comprising information from the skin and rib cage (automatically determined by image processing algorithms). Tests revealed that ribs position for prosthesis placement and modeling can be estimated with an average error of 5.0±3.6mm. One also showed that the ANN performance can be improved by introducing a manually determined initial STT value in the ANN normalization procedure (average error of 2.82±0.76mm). Such error range is well below current prosthesis manual modeling (approximately 11mm), which can provide a valuable and radiation-free procedure for prosthesis personalization.The authors acknowledge to Foundation for Science and Technology (FCT)-Portugal for the fellowships with references: SFRH/BD/74276/2010 and PTDC/SAU-BEB/103368/2008.ElsevierUniversidade do MinhoRodrigues, Pedro L.Rodrigues, Nuno F.Pinho, A. C. Marques deFonseca, Jaime C.Pinto, Jorge CorreiaVilaça, João L.20142014-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/32918eng1350-453310.1016/j.medengphy.2014.06.02025070021http://www.sciencedirect.com/science/article/pii/S1350453314001799info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:50:27Zoai:repositorium.sdum.uminho.pt:1822/32918Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:49:10.180082Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Automatic modeling of pectus excavatum corrective prosthesis using artificial neural networks |
title |
Automatic modeling of pectus excavatum corrective prosthesis using artificial neural networks |
spellingShingle |
Automatic modeling of pectus excavatum corrective prosthesis using artificial neural networks Rodrigues, Pedro L. Pectus excavatum Artificial neural networks Image segmentation Prosthesis 45 modelling Prosthesis modelling Science & Technology |
title_short |
Automatic modeling of pectus excavatum corrective prosthesis using artificial neural networks |
title_full |
Automatic modeling of pectus excavatum corrective prosthesis using artificial neural networks |
title_fullStr |
Automatic modeling of pectus excavatum corrective prosthesis using artificial neural networks |
title_full_unstemmed |
Automatic modeling of pectus excavatum corrective prosthesis using artificial neural networks |
title_sort |
Automatic modeling of pectus excavatum corrective prosthesis using artificial neural networks |
author |
Rodrigues, Pedro L. |
author_facet |
Rodrigues, Pedro L. Rodrigues, Nuno F. Pinho, A. C. Marques de Fonseca, Jaime C. Pinto, Jorge Correia Vilaça, João L. |
author_role |
author |
author2 |
Rodrigues, Nuno F. Pinho, A. C. Marques de Fonseca, Jaime C. Pinto, Jorge Correia Vilaça, João L. |
author2_role |
author author author author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Rodrigues, Pedro L. Rodrigues, Nuno F. Pinho, A. C. Marques de Fonseca, Jaime C. Pinto, Jorge Correia Vilaça, João L. |
dc.subject.por.fl_str_mv |
Pectus excavatum Artificial neural networks Image segmentation Prosthesis 45 modelling Prosthesis modelling Science & Technology |
topic |
Pectus excavatum Artificial neural networks Image segmentation Prosthesis 45 modelling Prosthesis modelling Science & Technology |
description |
Pectus excavatum is the most common deformity of the thorax. Pre-operative diagnosis usually includes Computed Tomography (CT) to successfully employ a thoracic prosthesis for anterior chest wall remodeling. Aiming at the elimination of radiation exposure, this paper presents a novel methodology for the replacement of CT by a 3D laser scanner (radiation-free) for prosthesis modeling. The complete elimination of CT is based on an accurate determination of ribs position and prosthesis placement region through skin surface points. The developed solution resorts to a normalized and combined outcome of an artificial neural network (ANN) set. Each ANN model was trained with data vectors from 165 male patients and using soft tissue thicknesses (STT) comprising information from the skin and rib cage (automatically determined by image processing algorithms). Tests revealed that ribs position for prosthesis placement and modeling can be estimated with an average error of 5.0±3.6mm. One also showed that the ANN performance can be improved by introducing a manually determined initial STT value in the ANN normalization procedure (average error of 2.82±0.76mm). Such error range is well below current prosthesis manual modeling (approximately 11mm), which can provide a valuable and radiation-free procedure for prosthesis personalization. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014 2014-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/32918 |
url |
http://hdl.handle.net/1822/32918 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1350-4533 10.1016/j.medengphy.2014.06.020 25070021 http://www.sciencedirect.com/science/article/pii/S1350453314001799 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133071658713088 |