Constant sign and nodal solutions for a class of nonlinear Dirichlet problems
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/14982 |
Resumo: | We consider a nonlinear Dirichlet problem with a Carathéodory reaction which has arbitrary growth from below. We show that the problem has at least three nontrivial smooth solutions, two of constant sign and the third nodal. In the semilinear case (i.e., p =2), with the reaction f(z, .)being C1and with subcritical growth, we show that there is a second nodal solution, for a total of four nontrivial smooth solutions. Finally,when the reaction has concave terms and is subcritical and for the nonlinear problem (i.e., 1 <p <∞) we show that again we can have the existence of three nontrivial smooth solutions, two of constant sign and a third nodal. |
id |
RCAP_09ebfbe408d9698b7ad8e154ab4af854 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/14982 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Constant sign and nodal solutions for a class of nonlinear Dirichlet problemsMountain pass theoremSecond deformation theoremEigenvalues of p-LaplacianCritical groupsConstant sign and nodal solutionsExtremal solutionsWe consider a nonlinear Dirichlet problem with a Carathéodory reaction which has arbitrary growth from below. We show that the problem has at least three nontrivial smooth solutions, two of constant sign and the third nodal. In the semilinear case (i.e., p =2), with the reaction f(z, .)being C1and with subcritical growth, we show that there is a second nodal solution, for a total of four nontrivial smooth solutions. Finally,when the reaction has concave terms and is subcritical and for the nonlinear problem (i.e., 1 <p <∞) we show that again we can have the existence of three nontrivial smooth solutions, two of constant sign and a third nodal.Elsevier2016-01-05T17:52:04Z2015-02-01T00:00:00Z2015-02info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/14982eng0022-247X10.1016/j.jmaa.2014.08.041Papageorgiou, N. S.Santos, S. R. AndradeStaicu, V.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:27:32Zoai:ria.ua.pt:10773/14982Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:50:26.221473Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Constant sign and nodal solutions for a class of nonlinear Dirichlet problems |
title |
Constant sign and nodal solutions for a class of nonlinear Dirichlet problems |
spellingShingle |
Constant sign and nodal solutions for a class of nonlinear Dirichlet problems Papageorgiou, N. S. Mountain pass theorem Second deformation theorem Eigenvalues of p-Laplacian Critical groups Constant sign and nodal solutions Extremal solutions |
title_short |
Constant sign and nodal solutions for a class of nonlinear Dirichlet problems |
title_full |
Constant sign and nodal solutions for a class of nonlinear Dirichlet problems |
title_fullStr |
Constant sign and nodal solutions for a class of nonlinear Dirichlet problems |
title_full_unstemmed |
Constant sign and nodal solutions for a class of nonlinear Dirichlet problems |
title_sort |
Constant sign and nodal solutions for a class of nonlinear Dirichlet problems |
author |
Papageorgiou, N. S. |
author_facet |
Papageorgiou, N. S. Santos, S. R. Andrade Staicu, V. |
author_role |
author |
author2 |
Santos, S. R. Andrade Staicu, V. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Papageorgiou, N. S. Santos, S. R. Andrade Staicu, V. |
dc.subject.por.fl_str_mv |
Mountain pass theorem Second deformation theorem Eigenvalues of p-Laplacian Critical groups Constant sign and nodal solutions Extremal solutions |
topic |
Mountain pass theorem Second deformation theorem Eigenvalues of p-Laplacian Critical groups Constant sign and nodal solutions Extremal solutions |
description |
We consider a nonlinear Dirichlet problem with a Carathéodory reaction which has arbitrary growth from below. We show that the problem has at least three nontrivial smooth solutions, two of constant sign and the third nodal. In the semilinear case (i.e., p =2), with the reaction f(z, .)being C1and with subcritical growth, we show that there is a second nodal solution, for a total of four nontrivial smooth solutions. Finally,when the reaction has concave terms and is subcritical and for the nonlinear problem (i.e., 1 <p <∞) we show that again we can have the existence of three nontrivial smooth solutions, two of constant sign and a third nodal. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-02-01T00:00:00Z 2015-02 2016-01-05T17:52:04Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/14982 |
url |
http://hdl.handle.net/10773/14982 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0022-247X 10.1016/j.jmaa.2014.08.041 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137554544459776 |