Nonlinear Robin problems with locally defined reaction

Detalhes bibliográficos
Autor(a) principal: Aizicovici, Sergiu
Data de Publicação: 2023
Outros Autores: Papageorgiou, Nikolaos S., Staicu, Vasile
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/36948
Resumo: We consider a nonlinear Robin problem driven by a p− Laplacian. The reaction consistes of two terms. The first one is parametric and only locally defined, while the second one is (p − 1)- superlinear. Using cutt-off techniques together with critical point theory and critical groups, we show that for big values of the parameter λ > 0, the problem has at least three nontrivial solutions, all with sign information (positive, negative and nodal). In the semilinear case (p = 2), we produce a second nodal solution, for a total of four nontrivial solutions, all with sign information.
id RCAP_ca9da554d099ae1353fd01929d87aed4
oai_identifier_str oai:ria.ua.pt:10773/36948
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Nonlinear Robin problems with locally defined reactionCut-off functionAR-conditionExtremal constant sign solutionsRegularity theoryWe consider a nonlinear Robin problem driven by a p− Laplacian. The reaction consistes of two terms. The first one is parametric and only locally defined, while the second one is (p − 1)- superlinear. Using cutt-off techniques together with critical point theory and critical groups, we show that for big values of the parameter λ > 0, the problem has at least three nontrivial solutions, all with sign information (positive, negative and nodal). In the semilinear case (p = 2), we produce a second nodal solution, for a total of four nontrivial solutions, all with sign information.Yokohama publishers2023-04-12T14:23:53Z2023-01-01T00:00:00Z2023info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/36948eng2189-3754Aizicovici, SergiuPapageorgiou, Nikolaos S.Staicu, Vasileinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:10:19Zoai:ria.ua.pt:10773/36948Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:07:16.372675Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Nonlinear Robin problems with locally defined reaction
title Nonlinear Robin problems with locally defined reaction
spellingShingle Nonlinear Robin problems with locally defined reaction
Aizicovici, Sergiu
Cut-off function
AR-condition
Extremal constant sign solutions
Regularity theory
title_short Nonlinear Robin problems with locally defined reaction
title_full Nonlinear Robin problems with locally defined reaction
title_fullStr Nonlinear Robin problems with locally defined reaction
title_full_unstemmed Nonlinear Robin problems with locally defined reaction
title_sort Nonlinear Robin problems with locally defined reaction
author Aizicovici, Sergiu
author_facet Aizicovici, Sergiu
Papageorgiou, Nikolaos S.
Staicu, Vasile
author_role author
author2 Papageorgiou, Nikolaos S.
Staicu, Vasile
author2_role author
author
dc.contributor.author.fl_str_mv Aizicovici, Sergiu
Papageorgiou, Nikolaos S.
Staicu, Vasile
dc.subject.por.fl_str_mv Cut-off function
AR-condition
Extremal constant sign solutions
Regularity theory
topic Cut-off function
AR-condition
Extremal constant sign solutions
Regularity theory
description We consider a nonlinear Robin problem driven by a p− Laplacian. The reaction consistes of two terms. The first one is parametric and only locally defined, while the second one is (p − 1)- superlinear. Using cutt-off techniques together with critical point theory and critical groups, we show that for big values of the parameter λ > 0, the problem has at least three nontrivial solutions, all with sign information (positive, negative and nodal). In the semilinear case (p = 2), we produce a second nodal solution, for a total of four nontrivial solutions, all with sign information.
publishDate 2023
dc.date.none.fl_str_mv 2023-04-12T14:23:53Z
2023-01-01T00:00:00Z
2023
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/36948
url http://hdl.handle.net/10773/36948
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2189-3754
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Yokohama publishers
publisher.none.fl_str_mv Yokohama publishers
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137728055476224