Nonlinear Robin problems with locally defined reaction
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/36948 |
Resumo: | We consider a nonlinear Robin problem driven by a p− Laplacian. The reaction consistes of two terms. The first one is parametric and only locally defined, while the second one is (p − 1)- superlinear. Using cutt-off techniques together with critical point theory and critical groups, we show that for big values of the parameter λ > 0, the problem has at least three nontrivial solutions, all with sign information (positive, negative and nodal). In the semilinear case (p = 2), we produce a second nodal solution, for a total of four nontrivial solutions, all with sign information. |
id |
RCAP_ca9da554d099ae1353fd01929d87aed4 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/36948 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Nonlinear Robin problems with locally defined reactionCut-off functionAR-conditionExtremal constant sign solutionsRegularity theoryWe consider a nonlinear Robin problem driven by a p− Laplacian. The reaction consistes of two terms. The first one is parametric and only locally defined, while the second one is (p − 1)- superlinear. Using cutt-off techniques together with critical point theory and critical groups, we show that for big values of the parameter λ > 0, the problem has at least three nontrivial solutions, all with sign information (positive, negative and nodal). In the semilinear case (p = 2), we produce a second nodal solution, for a total of four nontrivial solutions, all with sign information.Yokohama publishers2023-04-12T14:23:53Z2023-01-01T00:00:00Z2023info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/36948eng2189-3754Aizicovici, SergiuPapageorgiou, Nikolaos S.Staicu, Vasileinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:10:19Zoai:ria.ua.pt:10773/36948Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:07:16.372675Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Nonlinear Robin problems with locally defined reaction |
title |
Nonlinear Robin problems with locally defined reaction |
spellingShingle |
Nonlinear Robin problems with locally defined reaction Aizicovici, Sergiu Cut-off function AR-condition Extremal constant sign solutions Regularity theory |
title_short |
Nonlinear Robin problems with locally defined reaction |
title_full |
Nonlinear Robin problems with locally defined reaction |
title_fullStr |
Nonlinear Robin problems with locally defined reaction |
title_full_unstemmed |
Nonlinear Robin problems with locally defined reaction |
title_sort |
Nonlinear Robin problems with locally defined reaction |
author |
Aizicovici, Sergiu |
author_facet |
Aizicovici, Sergiu Papageorgiou, Nikolaos S. Staicu, Vasile |
author_role |
author |
author2 |
Papageorgiou, Nikolaos S. Staicu, Vasile |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Aizicovici, Sergiu Papageorgiou, Nikolaos S. Staicu, Vasile |
dc.subject.por.fl_str_mv |
Cut-off function AR-condition Extremal constant sign solutions Regularity theory |
topic |
Cut-off function AR-condition Extremal constant sign solutions Regularity theory |
description |
We consider a nonlinear Robin problem driven by a p− Laplacian. The reaction consistes of two terms. The first one is parametric and only locally defined, while the second one is (p − 1)- superlinear. Using cutt-off techniques together with critical point theory and critical groups, we show that for big values of the parameter λ > 0, the problem has at least three nontrivial solutions, all with sign information (positive, negative and nodal). In the semilinear case (p = 2), we produce a second nodal solution, for a total of four nontrivial solutions, all with sign information. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-04-12T14:23:53Z 2023-01-01T00:00:00Z 2023 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/36948 |
url |
http://hdl.handle.net/10773/36948 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2189-3754 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Yokohama publishers |
publisher.none.fl_str_mv |
Yokohama publishers |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137728055476224 |