The ideal structure of semigroups of linear transformations with upper bounds on their nullity or defect
Autor(a) principal: | |
---|---|
Data de Publicação: | 2009 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/1822/11152 |
Resumo: | Suppose $V$ is a vector space with ${\rm dim} V=p\geq q\geq\aleph_0$, and let $T(V)$ denote the semigroup (under composition) of all linear transformations of $V$. For each $\alpha\in T(V)$, let ${\rm ker}\alpha$ and ${\rm ran}\alpha$ denote the `kernel' and the `range' of $\alpha$, and write $n(\alpha)={\rm dim}{\rm ker}\alpha$ and $d(\alpha)={\rm codim}{\rm ran}\alpha$. In this paper, we study the semigroups $AM(p,q) =\{\alpha\in T(V):n(\alpha)<q\}$ and $AE(p,q) =\{\alpha\in T(V):d(\alpha)<q\}$. First, we determine whether they belong to the class of all semigroups whose sets of bi-ideals and quasi-ideals coincide. Then, for each semigroup, we describe its maximal regular subsemigroup, and we characterise its Green's relations and (two-sided) ideals. As a precursor to further work in this area, we also determine all the maximal right simple subsemigroups of $AM(p,q)$. |
id |
RCAP_0a3eeaac6b4b16ac03dcf18742b84048 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/11152 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
The ideal structure of semigroups of linear transformations with upper bounds on their nullity or defectBi-idealQuasi-idealLinear transformation semigroupMaximal regularMaximal right simpleScience & TechnologySuppose $V$ is a vector space with ${\rm dim} V=p\geq q\geq\aleph_0$, and let $T(V)$ denote the semigroup (under composition) of all linear transformations of $V$. For each $\alpha\in T(V)$, let ${\rm ker}\alpha$ and ${\rm ran}\alpha$ denote the `kernel' and the `range' of $\alpha$, and write $n(\alpha)={\rm dim}{\rm ker}\alpha$ and $d(\alpha)={\rm codim}{\rm ran}\alpha$. In this paper, we study the semigroups $AM(p,q) =\{\alpha\in T(V):n(\alpha)<q\}$ and $AE(p,q) =\{\alpha\in T(V):d(\alpha)<q\}$. First, we determine whether they belong to the class of all semigroups whose sets of bi-ideals and quasi-ideals coincide. Then, for each semigroup, we describe its maximal regular subsemigroup, and we characterise its Green's relations and (two-sided) ideals. As a precursor to further work in this area, we also determine all the maximal right simple subsemigroups of $AM(p,q)$.Fundação para a Ciência e a Tecnologia (FCT)Taylor & FrancisUniversidade do MinhoGonçalves, Suzana MendesSullivan, R. P.20092009-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/11152eng"Communications in Algebra". ISSN 0092-7872 . 37:7 (2009) 2522-2539..0092-787210.1080/00927870802622932http://www.informaworld.cominfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:48:54Zoai:repositorium.sdum.uminho.pt:1822/11152Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:47:14.386603Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
The ideal structure of semigroups of linear transformations with upper bounds on their nullity or defect |
title |
The ideal structure of semigroups of linear transformations with upper bounds on their nullity or defect |
spellingShingle |
The ideal structure of semigroups of linear transformations with upper bounds on their nullity or defect Gonçalves, Suzana Mendes Bi-ideal Quasi-ideal Linear transformation semigroup Maximal regular Maximal right simple Science & Technology |
title_short |
The ideal structure of semigroups of linear transformations with upper bounds on their nullity or defect |
title_full |
The ideal structure of semigroups of linear transformations with upper bounds on their nullity or defect |
title_fullStr |
The ideal structure of semigroups of linear transformations with upper bounds on their nullity or defect |
title_full_unstemmed |
The ideal structure of semigroups of linear transformations with upper bounds on their nullity or defect |
title_sort |
The ideal structure of semigroups of linear transformations with upper bounds on their nullity or defect |
author |
Gonçalves, Suzana Mendes |
author_facet |
Gonçalves, Suzana Mendes Sullivan, R. P. |
author_role |
author |
author2 |
Sullivan, R. P. |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Gonçalves, Suzana Mendes Sullivan, R. P. |
dc.subject.por.fl_str_mv |
Bi-ideal Quasi-ideal Linear transformation semigroup Maximal regular Maximal right simple Science & Technology |
topic |
Bi-ideal Quasi-ideal Linear transformation semigroup Maximal regular Maximal right simple Science & Technology |
description |
Suppose $V$ is a vector space with ${\rm dim} V=p\geq q\geq\aleph_0$, and let $T(V)$ denote the semigroup (under composition) of all linear transformations of $V$. For each $\alpha\in T(V)$, let ${\rm ker}\alpha$ and ${\rm ran}\alpha$ denote the `kernel' and the `range' of $\alpha$, and write $n(\alpha)={\rm dim}{\rm ker}\alpha$ and $d(\alpha)={\rm codim}{\rm ran}\alpha$. In this paper, we study the semigroups $AM(p,q) =\{\alpha\in T(V):n(\alpha)<q\}$ and $AE(p,q) =\{\alpha\in T(V):d(\alpha)<q\}$. First, we determine whether they belong to the class of all semigroups whose sets of bi-ideals and quasi-ideals coincide. Then, for each semigroup, we describe its maximal regular subsemigroup, and we characterise its Green's relations and (two-sided) ideals. As a precursor to further work in this area, we also determine all the maximal right simple subsemigroups of $AM(p,q)$. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009 2009-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/11152 |
url |
http://hdl.handle.net/1822/11152 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
"Communications in Algebra". ISSN 0092-7872 . 37:7 (2009) 2522-2539.. 0092-7872 10.1080/00927870802622932 http://www.informaworld.com |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Taylor & Francis |
publisher.none.fl_str_mv |
Taylor & Francis |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133044648443904 |