The ideal structure of semigroups of linear transformations with upper bounds on their nullity or defect

Detalhes bibliográficos
Autor(a) principal: Gonçalves, Suzana Mendes
Data de Publicação: 2009
Outros Autores: Sullivan, R. P.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/1822/11152
Resumo: Suppose $V$ is a vector space with ${\rm dim} V=p\geq q\geq\aleph_0$, and let $T(V)$ denote the semigroup (under composition) of all linear transformations of $V$. For each $\alpha\in T(V)$, let ${\rm ker}\alpha$ and ${\rm ran}\alpha$ denote the `kernel' and the `range' of $\alpha$, and write $n(\alpha)={\rm dim}{\rm ker}\alpha$ and $d(\alpha)={\rm codim}{\rm ran}\alpha$. In this paper, we study the semigroups $AM(p,q) =\{\alpha\in T(V):n(\alpha)<q\}$ and $AE(p,q) =\{\alpha\in T(V):d(\alpha)<q\}$. First, we determine whether they belong to the class of all semigroups whose sets of bi-ideals and quasi-ideals coincide. Then, for each semigroup, we describe its maximal regular subsemigroup, and we characterise its Green's relations and (two-sided) ideals. As a precursor to further work in this area, we also determine all the maximal right simple subsemigroups of $AM(p,q)$.
id RCAP_0a3eeaac6b4b16ac03dcf18742b84048
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/11152
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling The ideal structure of semigroups of linear transformations with upper bounds on their nullity or defectBi-idealQuasi-idealLinear transformation semigroupMaximal regularMaximal right simpleScience & TechnologySuppose $V$ is a vector space with ${\rm dim} V=p\geq q\geq\aleph_0$, and let $T(V)$ denote the semigroup (under composition) of all linear transformations of $V$. For each $\alpha\in T(V)$, let ${\rm ker}\alpha$ and ${\rm ran}\alpha$ denote the `kernel' and the `range' of $\alpha$, and write $n(\alpha)={\rm dim}{\rm ker}\alpha$ and $d(\alpha)={\rm codim}{\rm ran}\alpha$. In this paper, we study the semigroups $AM(p,q) =\{\alpha\in T(V):n(\alpha)<q\}$ and $AE(p,q) =\{\alpha\in T(V):d(\alpha)<q\}$. First, we determine whether they belong to the class of all semigroups whose sets of bi-ideals and quasi-ideals coincide. Then, for each semigroup, we describe its maximal regular subsemigroup, and we characterise its Green's relations and (two-sided) ideals. As a precursor to further work in this area, we also determine all the maximal right simple subsemigroups of $AM(p,q)$.Fundação para a Ciência e a Tecnologia (FCT)Taylor & FrancisUniversidade do MinhoGonçalves, Suzana MendesSullivan, R. P.20092009-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/11152eng"Communications in Algebra". ISSN 0092-7872 . 37:7 (2009) 2522-2539..0092-787210.1080/00927870802622932http://www.informaworld.cominfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:48:54Zoai:repositorium.sdum.uminho.pt:1822/11152Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:47:14.386603Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv The ideal structure of semigroups of linear transformations with upper bounds on their nullity or defect
title The ideal structure of semigroups of linear transformations with upper bounds on their nullity or defect
spellingShingle The ideal structure of semigroups of linear transformations with upper bounds on their nullity or defect
Gonçalves, Suzana Mendes
Bi-ideal
Quasi-ideal
Linear transformation semigroup
Maximal regular
Maximal right simple
Science & Technology
title_short The ideal structure of semigroups of linear transformations with upper bounds on their nullity or defect
title_full The ideal structure of semigroups of linear transformations with upper bounds on their nullity or defect
title_fullStr The ideal structure of semigroups of linear transformations with upper bounds on their nullity or defect
title_full_unstemmed The ideal structure of semigroups of linear transformations with upper bounds on their nullity or defect
title_sort The ideal structure of semigroups of linear transformations with upper bounds on their nullity or defect
author Gonçalves, Suzana Mendes
author_facet Gonçalves, Suzana Mendes
Sullivan, R. P.
author_role author
author2 Sullivan, R. P.
author2_role author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Gonçalves, Suzana Mendes
Sullivan, R. P.
dc.subject.por.fl_str_mv Bi-ideal
Quasi-ideal
Linear transformation semigroup
Maximal regular
Maximal right simple
Science & Technology
topic Bi-ideal
Quasi-ideal
Linear transformation semigroup
Maximal regular
Maximal right simple
Science & Technology
description Suppose $V$ is a vector space with ${\rm dim} V=p\geq q\geq\aleph_0$, and let $T(V)$ denote the semigroup (under composition) of all linear transformations of $V$. For each $\alpha\in T(V)$, let ${\rm ker}\alpha$ and ${\rm ran}\alpha$ denote the `kernel' and the `range' of $\alpha$, and write $n(\alpha)={\rm dim}{\rm ker}\alpha$ and $d(\alpha)={\rm codim}{\rm ran}\alpha$. In this paper, we study the semigroups $AM(p,q) =\{\alpha\in T(V):n(\alpha)<q\}$ and $AE(p,q) =\{\alpha\in T(V):d(\alpha)<q\}$. First, we determine whether they belong to the class of all semigroups whose sets of bi-ideals and quasi-ideals coincide. Then, for each semigroup, we describe its maximal regular subsemigroup, and we characterise its Green's relations and (two-sided) ideals. As a precursor to further work in this area, we also determine all the maximal right simple subsemigroups of $AM(p,q)$.
publishDate 2009
dc.date.none.fl_str_mv 2009
2009-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/11152
url http://hdl.handle.net/1822/11152
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv "Communications in Algebra". ISSN 0092-7872 . 37:7 (2009) 2522-2539..
0092-7872
10.1080/00927870802622932
http://www.informaworld.com
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Taylor & Francis
publisher.none.fl_str_mv Taylor & Francis
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133044648443904