Bi-composite sandwich moldings: processing, mechanical performance and bioactive behaviour
Autor(a) principal: | |
---|---|
Data de Publicação: | 2003 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/1822/3927 |
Resumo: | Two composite systems composed of high-density polyethylene (HDPE) filled with hydroxyapatite (HA) and carbon fiber (C fiber) were compounded in a co-rotating twin screw extruder and subsequently molded in a two component injection molding machine in order to produce test bars with a sandwich-like morphology. These moldings are based on a HDPE/HA composite outer layer and a HDPE/C fiber composite core. The mechanical performance of the obtained specimens was assessed by tensile and impact testing. The fracture surfaces were observed by scanning electron microscopy (SEM) and optical reflectance microscopy was used to characterize the morphology within the moldings. In order to study the bioactivity of the molded specimens, the samples were immersed for different periods of time up to 30 days in a simulated-body fluid (SBF) with an ion composition similar to human blood plasma. After each immersion period, the surfaces of the specimens were characterized by SEM. The chemical composition and the structure of the deposited films were studied by electron dispersive spectroscopy (EDS) and thin-film X-ray diffraction (TF-XRD). The evolution of the elemental concentrations in the SBF solution was determined by induced coupled plasma emission (ICP) spectroscopy. Bi-composite moldings featuring a sandwich-like morphology were successfully produced. These moldings present a high stiffness as a result of the C fiber reinforcement present in the molding core. Furthermore, as a result of the HA loading, the sandwich moldings exhibit a clear in vitro bioactive behavior under simulated physiological conditions, which indicates that an in vivo bone-bonding behavior can be expected for these materials. |
id |
RCAP_0b40c75399732bfd8ea8a7af7aa64e9e |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/3927 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Bi-composite sandwich moldings: processing, mechanical performance and bioactive behaviourScience & TechnologyTwo composite systems composed of high-density polyethylene (HDPE) filled with hydroxyapatite (HA) and carbon fiber (C fiber) were compounded in a co-rotating twin screw extruder and subsequently molded in a two component injection molding machine in order to produce test bars with a sandwich-like morphology. These moldings are based on a HDPE/HA composite outer layer and a HDPE/C fiber composite core. The mechanical performance of the obtained specimens was assessed by tensile and impact testing. The fracture surfaces were observed by scanning electron microscopy (SEM) and optical reflectance microscopy was used to characterize the morphology within the moldings. In order to study the bioactivity of the molded specimens, the samples were immersed for different periods of time up to 30 days in a simulated-body fluid (SBF) with an ion composition similar to human blood plasma. After each immersion period, the surfaces of the specimens were characterized by SEM. The chemical composition and the structure of the deposited films were studied by electron dispersive spectroscopy (EDS) and thin-film X-ray diffraction (TF-XRD). The evolution of the elemental concentrations in the SBF solution was determined by induced coupled plasma emission (ICP) spectroscopy. Bi-composite moldings featuring a sandwich-like morphology were successfully produced. These moldings present a high stiffness as a result of the C fiber reinforcement present in the molding core. Furthermore, as a result of the HA loading, the sandwich moldings exhibit a clear in vitro bioactive behavior under simulated physiological conditions, which indicates that an in vivo bone-bonding behavior can be expected for these materials.Subprograma Ciência e Tecnologia do 2.º Quadro Comunitário de Apoio, Ministério da Ciência e Tecnologia (Portugal).KluwerUniversidade do MinhoSousa, R. A.Oliveira, A. L.Reis, R. L.Cunha, A. M.Bevis, M. J.2003-052003-05-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/3927eng"Journal of Materials Science: Materials in Medicine". ISSN 0957-4530. 14:5 (May 2003) 385-397.0957-453010.1023/A:1023294615866info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:36:11Zoai:repositorium.sdum.uminho.pt:1822/3927Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:32:11.671270Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Bi-composite sandwich moldings: processing, mechanical performance and bioactive behaviour |
title |
Bi-composite sandwich moldings: processing, mechanical performance and bioactive behaviour |
spellingShingle |
Bi-composite sandwich moldings: processing, mechanical performance and bioactive behaviour Sousa, R. A. Science & Technology |
title_short |
Bi-composite sandwich moldings: processing, mechanical performance and bioactive behaviour |
title_full |
Bi-composite sandwich moldings: processing, mechanical performance and bioactive behaviour |
title_fullStr |
Bi-composite sandwich moldings: processing, mechanical performance and bioactive behaviour |
title_full_unstemmed |
Bi-composite sandwich moldings: processing, mechanical performance and bioactive behaviour |
title_sort |
Bi-composite sandwich moldings: processing, mechanical performance and bioactive behaviour |
author |
Sousa, R. A. |
author_facet |
Sousa, R. A. Oliveira, A. L. Reis, R. L. Cunha, A. M. Bevis, M. J. |
author_role |
author |
author2 |
Oliveira, A. L. Reis, R. L. Cunha, A. M. Bevis, M. J. |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Sousa, R. A. Oliveira, A. L. Reis, R. L. Cunha, A. M. Bevis, M. J. |
dc.subject.por.fl_str_mv |
Science & Technology |
topic |
Science & Technology |
description |
Two composite systems composed of high-density polyethylene (HDPE) filled with hydroxyapatite (HA) and carbon fiber (C fiber) were compounded in a co-rotating twin screw extruder and subsequently molded in a two component injection molding machine in order to produce test bars with a sandwich-like morphology. These moldings are based on a HDPE/HA composite outer layer and a HDPE/C fiber composite core. The mechanical performance of the obtained specimens was assessed by tensile and impact testing. The fracture surfaces were observed by scanning electron microscopy (SEM) and optical reflectance microscopy was used to characterize the morphology within the moldings. In order to study the bioactivity of the molded specimens, the samples were immersed for different periods of time up to 30 days in a simulated-body fluid (SBF) with an ion composition similar to human blood plasma. After each immersion period, the surfaces of the specimens were characterized by SEM. The chemical composition and the structure of the deposited films were studied by electron dispersive spectroscopy (EDS) and thin-film X-ray diffraction (TF-XRD). The evolution of the elemental concentrations in the SBF solution was determined by induced coupled plasma emission (ICP) spectroscopy. Bi-composite moldings featuring a sandwich-like morphology were successfully produced. These moldings present a high stiffness as a result of the C fiber reinforcement present in the molding core. Furthermore, as a result of the HA loading, the sandwich moldings exhibit a clear in vitro bioactive behavior under simulated physiological conditions, which indicates that an in vivo bone-bonding behavior can be expected for these materials. |
publishDate |
2003 |
dc.date.none.fl_str_mv |
2003-05 2003-05-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/3927 |
url |
http://hdl.handle.net/1822/3927 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
"Journal of Materials Science: Materials in Medicine". ISSN 0957-4530. 14:5 (May 2003) 385-397. 0957-4530 10.1023/A:1023294615866 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Kluwer |
publisher.none.fl_str_mv |
Kluwer |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799132833686487041 |