Ejection force of tubular injection moldings. Part II : a prediction model

Detalhes bibliográficos
Autor(a) principal: Pontes, A. J.
Data de Publicação: 2005
Outros Autores: Pantani, R., Titomanlio, G., Pouzada, A. S.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/1822/12568
Resumo: The integrated knowledge of the injection molding process and the material changes induced by processing is essential to guarantee the quality of technical parts. In the case of parts with deep cavities, quite often the ejection phase of the molding cycle is critical. Thus, in the mold design stage, the aspects associated with the ejection system will require special consideration. In particular, the prediction of the ejection force will contribute to optimizing the mold design and to guarantee the integrity of the moldings. In this work, a simulation algorithm based on a thermomechanical model is described and their predictions are compared with experimental data obtained from a fully-instrumented mold (pressure, temperature, and force). Three common thermoplastics polymers were used for the tubular moldings: a semicrystalline polypropylene and two amorphous thermoplastics: polystyrene and polycarbonate. The thermomechanical model is based on the assumption of the polymer behavior changing from purely viscous to purely elastic below a transition point. This point corresponds to solidification determined by temperature in the case of amorphous materials and by critical crystallinity for semicrystalline polymers. The model results for the ejection force closely agree with the experimental data for the three materials used.
id RCAP_cbe7ea55b17fab3d6387bb026ea92d05
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/12568
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Ejection force of tubular injection moldings. Part II : a prediction modelScience & TechnologyThe integrated knowledge of the injection molding process and the material changes induced by processing is essential to guarantee the quality of technical parts. In the case of parts with deep cavities, quite often the ejection phase of the molding cycle is critical. Thus, in the mold design stage, the aspects associated with the ejection system will require special consideration. In particular, the prediction of the ejection force will contribute to optimizing the mold design and to guarantee the integrity of the moldings. In this work, a simulation algorithm based on a thermomechanical model is described and their predictions are compared with experimental data obtained from a fully-instrumented mold (pressure, temperature, and force). Three common thermoplastics polymers were used for the tubular moldings: a semicrystalline polypropylene and two amorphous thermoplastics: polystyrene and polycarbonate. The thermomechanical model is based on the assumption of the polymer behavior changing from purely viscous to purely elastic below a transition point. This point corresponds to solidification determined by temperature in the case of amorphous materials and by critical crystallinity for semicrystalline polymers. The model results for the ejection force closely agree with the experimental data for the three materials used.John Wiley & Sons IncUniversidade do MinhoPontes, A. J.Pantani, R.Titomanlio, G.Pouzada, A. S.20052005-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/12568eng1548-263410.1002/pen.20275info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:04:40Zoai:repositorium.sdum.uminho.pt:1822/12568Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T18:54:58.744021Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Ejection force of tubular injection moldings. Part II : a prediction model
title Ejection force of tubular injection moldings. Part II : a prediction model
spellingShingle Ejection force of tubular injection moldings. Part II : a prediction model
Pontes, A. J.
Science & Technology
title_short Ejection force of tubular injection moldings. Part II : a prediction model
title_full Ejection force of tubular injection moldings. Part II : a prediction model
title_fullStr Ejection force of tubular injection moldings. Part II : a prediction model
title_full_unstemmed Ejection force of tubular injection moldings. Part II : a prediction model
title_sort Ejection force of tubular injection moldings. Part II : a prediction model
author Pontes, A. J.
author_facet Pontes, A. J.
Pantani, R.
Titomanlio, G.
Pouzada, A. S.
author_role author
author2 Pantani, R.
Titomanlio, G.
Pouzada, A. S.
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Pontes, A. J.
Pantani, R.
Titomanlio, G.
Pouzada, A. S.
dc.subject.por.fl_str_mv Science & Technology
topic Science & Technology
description The integrated knowledge of the injection molding process and the material changes induced by processing is essential to guarantee the quality of technical parts. In the case of parts with deep cavities, quite often the ejection phase of the molding cycle is critical. Thus, in the mold design stage, the aspects associated with the ejection system will require special consideration. In particular, the prediction of the ejection force will contribute to optimizing the mold design and to guarantee the integrity of the moldings. In this work, a simulation algorithm based on a thermomechanical model is described and their predictions are compared with experimental data obtained from a fully-instrumented mold (pressure, temperature, and force). Three common thermoplastics polymers were used for the tubular moldings: a semicrystalline polypropylene and two amorphous thermoplastics: polystyrene and polycarbonate. The thermomechanical model is based on the assumption of the polymer behavior changing from purely viscous to purely elastic below a transition point. This point corresponds to solidification determined by temperature in the case of amorphous materials and by critical crystallinity for semicrystalline polymers. The model results for the ejection force closely agree with the experimental data for the three materials used.
publishDate 2005
dc.date.none.fl_str_mv 2005
2005-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/12568
url http://hdl.handle.net/1822/12568
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1548-2634
10.1002/pen.20275
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv John Wiley & Sons Inc
publisher.none.fl_str_mv John Wiley & Sons Inc
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799132334201503744