Exosomes in transcellular proteostasis and Age-Related Macular Degeneration

Detalhes bibliográficos
Autor(a) principal: Ferraz, Luís Filipe Mourão de Carvalho
Data de Publicação: 2023
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/162618
Resumo: Abstract Age-related macular degeneration (AMD) stands as one of the most common causes of blindness, affecting one in eight people over 60 years of age and more than 190 million individuals worldwide. With the aging of global population, these numbers are expected to surge. Alarmingly, there is still no effective treatments for the dry form of AMD, while the sole available treatment for its wet counterpart, which affects only 10% of patients, relies on VEGF inhibitors and can only delay disease progression. Therefore, there is an urgent need for new therapeutic strategies. AMD is characterized by progressive degeneration of the macula, a region with the densest photoreceptor population, and subsequent loss of the central and more detailed vision area. While AMD pathology mechanisms are yet to be fully understood, one defining aspect of the disease is the degeneration of the Retinal Pigment Epithelium (RPE). These postmitotic cells play a pivotal role since they are responsible for phagocytosing and degrading the shed apices of the photoreceptor outer segments (POS), as photoreceptors regenerate their visual pigment-laden extensions. Over time, because of the increased phagocytic burden, RPE cells in the macula face an increased proteolytic challenge, often resulting in localized degeneration within the macular region, with the surrounding peripheral retina remaining relatively preserved. The progressive loss of proteolytic capacity is one of the defining aspects of the age-related decline of Proteostasis. Proteostasis, or the mechanisms maintaining the balance between synthesis, folding, trafficking, and degradation of proteins, has been perceived as an inherently cell-autonomous process. However, therapies constructed on this supposition present severe limitations. In this context, researchers have recently pivoted towards the idea that proteostasis can be orchestrated in a broader, more systemic way, encompassing entire tissues and organs. An example of transcellular proteostasis is the potential exchange of proteostasis machinery and even undegraded, toxic proteins between cells via extracellular vesicles. Within this framework, AMD emerges as an ideal model to study the molecular mechanisms of transcellular proteostasis, mediated by extracellular vesicles, within the RPE monolayer. We hypothesize that extracellular vesicles may transfer proteostasis machinery from the more burdened macular RPE to the periphery and dispose of unwanted and undegraded proteins derived from incomplete POS elimination. Our data shows that a particular type of extracellular vesicles, exosomes, may participate in the clearance of harmful POS material that RPE cells cannot degrade. This mechanism may protect RPE cells from toxicity but also transfer proteotoxic peptides to other cells. Lamp2a, a membrane protein present in endosomes and lysosomes, was also identified as a potential regulator of the selective targeting of undegraded protein material into exosomes.
id RCAP_0b64d92a6702b6c4ce4d238f7df02b98
oai_identifier_str oai:run.unl.pt:10362/162618
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Exosomes in transcellular proteostasis and Age-Related Macular DegenerationExosomestranscellular proteostasisMacular DegenerationCiências MédicasAbstract Age-related macular degeneration (AMD) stands as one of the most common causes of blindness, affecting one in eight people over 60 years of age and more than 190 million individuals worldwide. With the aging of global population, these numbers are expected to surge. Alarmingly, there is still no effective treatments for the dry form of AMD, while the sole available treatment for its wet counterpart, which affects only 10% of patients, relies on VEGF inhibitors and can only delay disease progression. Therefore, there is an urgent need for new therapeutic strategies. AMD is characterized by progressive degeneration of the macula, a region with the densest photoreceptor population, and subsequent loss of the central and more detailed vision area. While AMD pathology mechanisms are yet to be fully understood, one defining aspect of the disease is the degeneration of the Retinal Pigment Epithelium (RPE). These postmitotic cells play a pivotal role since they are responsible for phagocytosing and degrading the shed apices of the photoreceptor outer segments (POS), as photoreceptors regenerate their visual pigment-laden extensions. Over time, because of the increased phagocytic burden, RPE cells in the macula face an increased proteolytic challenge, often resulting in localized degeneration within the macular region, with the surrounding peripheral retina remaining relatively preserved. The progressive loss of proteolytic capacity is one of the defining aspects of the age-related decline of Proteostasis. Proteostasis, or the mechanisms maintaining the balance between synthesis, folding, trafficking, and degradation of proteins, has been perceived as an inherently cell-autonomous process. However, therapies constructed on this supposition present severe limitations. In this context, researchers have recently pivoted towards the idea that proteostasis can be orchestrated in a broader, more systemic way, encompassing entire tissues and organs. An example of transcellular proteostasis is the potential exchange of proteostasis machinery and even undegraded, toxic proteins between cells via extracellular vesicles. Within this framework, AMD emerges as an ideal model to study the molecular mechanisms of transcellular proteostasis, mediated by extracellular vesicles, within the RPE monolayer. We hypothesize that extracellular vesicles may transfer proteostasis machinery from the more burdened macular RPE to the periphery and dispose of unwanted and undegraded proteins derived from incomplete POS elimination. Our data shows that a particular type of extracellular vesicles, exosomes, may participate in the clearance of harmful POS material that RPE cells cannot degrade. This mechanism may protect RPE cells from toxicity but also transfer proteotoxic peptides to other cells. Lamp2a, a membrane protein present in endosomes and lysosomes, was also identified as a potential regulator of the selective targeting of undegraded protein material into exosomes.Resumo A Degeneração Macular relacionada com a Idade (DMI) é uma das causas mais comuns de cegueira, afetando uma em cada oito pessoas com mais de 60 anos e com mais de 190 milhões casos mundialmente. Com o envelhecimento da população, estima-se que estes números venham a aumentar. Face a isto, torna-se ainda mais alarmante a ausência de tratamentos eficazes para a forma seca da DMI, enquanto o único tratamento disponível para a sua forma húmida, que afeta apenas 10% dos doentes, baseia-se em inibidores do VEGF e só pode atrasar o aparecimento da cegueira. Portanto, há uma necessidade urgente de novas estratégias terapêuticas. A DMI caracteriza-se pela degeneração progressiva da mácula, a região da retina com maior densidade de fotorrecetores, e subsequente perda de visão central e mais detalhada. Embora os mecanismos patológicos da DMI ainda sejam objeto de estudo, sabe-se que a degeneração do epitélio pigmentado da retina (EPR) é um aspeto importante. Estas células pós-mitóticas são responsáveis por fagocitar e degradar os segmentos externos dos fotorrecetores (SEF) à medida que estes regeneram. Com o avançar da idade, as células do EPR na mácula enfrentam um stress cada vez maior, resultando muitas vezes em degeneração localizada na região macular, mantendo-se a retina periférica relativamente preservada. A perda progressiva da capacidade proteolítica é um dos aspetos do declínio da Proteostase associado à idade. A Proteostase, ou os mecanismos que mantêm o equilíbrio entre a síntese, o dobramento, o tráfego e a degradação das proteínas, tem sido conceptualizada como um processo autónomo das células. No entanto, as terapias construídas sobre esta suposição têm apresentado bastantes limitações. Recentemente, a ideia de que a proteostase pode ser orquestrada de uma forma mais ampla e sistémica, abrangendo tecidos e órgãos, tem vindo a ganhar força. Um exemplo de proteostase transcelular é a potencial troca de maquinaria de proteostase e até mesmo de proteínas não degradadas e tóxicas entre células via vesículas extracelulares. Neste contexto, a DMI surge como um modelo ideal para estudar os mecanismos moleculares da proteostase transcelular mediada por vesículas extracelulares na monocamada do EPR. Nesta tese estudamos a hipótese de que exossomas, um tipo de vesículas extracelulares, possam transferir maquinaria de proteostase das células do RPE macular mais sobrecarregadas para a periferia e descartar proteínas indesejadas derivadas da eliminação incompleta dos SEF. Os resultados obtidos mostram que exossomas participam na eliminação de material nocivo não degradado. Este mecanismo pode proteger as células do RPE da toxicidade mas também transferir péptidos proteotóxicos para outras células. A lamp2a, uma proteína de membrana presente nos endossomas e lisossomas, foi também identificada como um potencial regulador da seleção de material proteico não degradado para os exossomas.Ferreira, João Vasco OliveiraPereira, Paulo CarvalhoRUNFerraz, Luís Filipe Mourão de Carvalho2024-01-22T11:56:07Z2023-12-212023-12-21T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/162618TID:203475046enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:45:33Zoai:run.unl.pt:10362/162618Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:58:59.225221Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Exosomes in transcellular proteostasis and Age-Related Macular Degeneration
title Exosomes in transcellular proteostasis and Age-Related Macular Degeneration
spellingShingle Exosomes in transcellular proteostasis and Age-Related Macular Degeneration
Ferraz, Luís Filipe Mourão de Carvalho
Exosomes
transcellular proteostasis
Macular Degeneration
Ciências Médicas
title_short Exosomes in transcellular proteostasis and Age-Related Macular Degeneration
title_full Exosomes in transcellular proteostasis and Age-Related Macular Degeneration
title_fullStr Exosomes in transcellular proteostasis and Age-Related Macular Degeneration
title_full_unstemmed Exosomes in transcellular proteostasis and Age-Related Macular Degeneration
title_sort Exosomes in transcellular proteostasis and Age-Related Macular Degeneration
author Ferraz, Luís Filipe Mourão de Carvalho
author_facet Ferraz, Luís Filipe Mourão de Carvalho
author_role author
dc.contributor.none.fl_str_mv Ferreira, João Vasco Oliveira
Pereira, Paulo Carvalho
RUN
dc.contributor.author.fl_str_mv Ferraz, Luís Filipe Mourão de Carvalho
dc.subject.por.fl_str_mv Exosomes
transcellular proteostasis
Macular Degeneration
Ciências Médicas
topic Exosomes
transcellular proteostasis
Macular Degeneration
Ciências Médicas
description Abstract Age-related macular degeneration (AMD) stands as one of the most common causes of blindness, affecting one in eight people over 60 years of age and more than 190 million individuals worldwide. With the aging of global population, these numbers are expected to surge. Alarmingly, there is still no effective treatments for the dry form of AMD, while the sole available treatment for its wet counterpart, which affects only 10% of patients, relies on VEGF inhibitors and can only delay disease progression. Therefore, there is an urgent need for new therapeutic strategies. AMD is characterized by progressive degeneration of the macula, a region with the densest photoreceptor population, and subsequent loss of the central and more detailed vision area. While AMD pathology mechanisms are yet to be fully understood, one defining aspect of the disease is the degeneration of the Retinal Pigment Epithelium (RPE). These postmitotic cells play a pivotal role since they are responsible for phagocytosing and degrading the shed apices of the photoreceptor outer segments (POS), as photoreceptors regenerate their visual pigment-laden extensions. Over time, because of the increased phagocytic burden, RPE cells in the macula face an increased proteolytic challenge, often resulting in localized degeneration within the macular region, with the surrounding peripheral retina remaining relatively preserved. The progressive loss of proteolytic capacity is one of the defining aspects of the age-related decline of Proteostasis. Proteostasis, or the mechanisms maintaining the balance between synthesis, folding, trafficking, and degradation of proteins, has been perceived as an inherently cell-autonomous process. However, therapies constructed on this supposition present severe limitations. In this context, researchers have recently pivoted towards the idea that proteostasis can be orchestrated in a broader, more systemic way, encompassing entire tissues and organs. An example of transcellular proteostasis is the potential exchange of proteostasis machinery and even undegraded, toxic proteins between cells via extracellular vesicles. Within this framework, AMD emerges as an ideal model to study the molecular mechanisms of transcellular proteostasis, mediated by extracellular vesicles, within the RPE monolayer. We hypothesize that extracellular vesicles may transfer proteostasis machinery from the more burdened macular RPE to the periphery and dispose of unwanted and undegraded proteins derived from incomplete POS elimination. Our data shows that a particular type of extracellular vesicles, exosomes, may participate in the clearance of harmful POS material that RPE cells cannot degrade. This mechanism may protect RPE cells from toxicity but also transfer proteotoxic peptides to other cells. Lamp2a, a membrane protein present in endosomes and lysosomes, was also identified as a potential regulator of the selective targeting of undegraded protein material into exosomes.
publishDate 2023
dc.date.none.fl_str_mv 2023-12-21
2023-12-21T00:00:00Z
2024-01-22T11:56:07Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/162618
TID:203475046
url http://hdl.handle.net/10362/162618
identifier_str_mv TID:203475046
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799138170289258496