Landscape Mosaic Composition and Mean Contributive Value Index
Autor(a) principal: | |
---|---|
Data de Publicação: | 2010 |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://scielo.pt/scielo.php?script=sci_arttext&pid=S0870-63522010000300006 |
Resumo: | Optimization of landscape mosaics is a theme that involves both compositional and configuration features. This paper just deals with the first problem: may we say what are the optimal proportions of different habitats in a mosaic under specified criteria? Environmental economists claim that landscape changes reflect monetary values and utility maximization or, in more general terms, maximization of expected subjective utility. Theory of Relevance advocates strategic reasoning in terms of the maximization of information and the minimization of the cognitive processing effort, and that could be assessed with a mathematical formula as far as it conveys some semantic insight over the compositional problem of the mosaic. Contributive value is a notion that goes back to Kant moral duty statements and may be approached through quantitative procedures that internalize both intrinsic and context values. Under that perspective Kw index here discussed may help assessing quantitative scenarios of the compositional problem of the landscape mosaic. I exemplify with an application with economic data relative to the region of Nisa, Portugal. |
id |
RCAP_0bbd7f56980195e9c5ef071668937bfb |
---|---|
oai_identifier_str |
oai:scielo:S0870-63522010000300006 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Landscape Mosaic Composition and Mean Contributive Value IndexExpected utility maximizationcontributive valueindex Kwtheory of relevanceOptimization of landscape mosaics is a theme that involves both compositional and configuration features. This paper just deals with the first problem: may we say what are the optimal proportions of different habitats in a mosaic under specified criteria? Environmental economists claim that landscape changes reflect monetary values and utility maximization or, in more general terms, maximization of expected subjective utility. Theory of Relevance advocates strategic reasoning in terms of the maximization of information and the minimization of the cognitive processing effort, and that could be assessed with a mathematical formula as far as it conveys some semantic insight over the compositional problem of the mosaic. Contributive value is a notion that goes back to Kant moral duty statements and may be approached through quantitative procedures that internalize both intrinsic and context values. Under that perspective Kw index here discussed may help assessing quantitative scenarios of the compositional problem of the landscape mosaic. I exemplify with an application with economic data relative to the region of Nisa, Portugal.Unidade de Silvicultura e Produtos Florestais2010-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articletext/htmlhttp://scielo.pt/scielo.php?script=sci_arttext&pid=S0870-63522010000300006Silva Lusitana v.18 n.2 2010reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAPenghttp://scielo.pt/scielo.php?script=sci_arttext&pid=S0870-63522010000300006Casquilho,José Pintoinfo:eu-repo/semantics/openAccess2024-02-06T16:59:19Zoai:scielo:S0870-63522010000300006Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:15:40.685307Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Landscape Mosaic Composition and Mean Contributive Value Index |
title |
Landscape Mosaic Composition and Mean Contributive Value Index |
spellingShingle |
Landscape Mosaic Composition and Mean Contributive Value Index Casquilho,José Pinto Expected utility maximization contributive value index Kw theory of relevance |
title_short |
Landscape Mosaic Composition and Mean Contributive Value Index |
title_full |
Landscape Mosaic Composition and Mean Contributive Value Index |
title_fullStr |
Landscape Mosaic Composition and Mean Contributive Value Index |
title_full_unstemmed |
Landscape Mosaic Composition and Mean Contributive Value Index |
title_sort |
Landscape Mosaic Composition and Mean Contributive Value Index |
author |
Casquilho,José Pinto |
author_facet |
Casquilho,José Pinto |
author_role |
author |
dc.contributor.author.fl_str_mv |
Casquilho,José Pinto |
dc.subject.por.fl_str_mv |
Expected utility maximization contributive value index Kw theory of relevance |
topic |
Expected utility maximization contributive value index Kw theory of relevance |
description |
Optimization of landscape mosaics is a theme that involves both compositional and configuration features. This paper just deals with the first problem: may we say what are the optimal proportions of different habitats in a mosaic under specified criteria? Environmental economists claim that landscape changes reflect monetary values and utility maximization or, in more general terms, maximization of expected subjective utility. Theory of Relevance advocates strategic reasoning in terms of the maximization of information and the minimization of the cognitive processing effort, and that could be assessed with a mathematical formula as far as it conveys some semantic insight over the compositional problem of the mosaic. Contributive value is a notion that goes back to Kant moral duty statements and may be approached through quantitative procedures that internalize both intrinsic and context values. Under that perspective Kw index here discussed may help assessing quantitative scenarios of the compositional problem of the landscape mosaic. I exemplify with an application with economic data relative to the region of Nisa, Portugal. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-01-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://scielo.pt/scielo.php?script=sci_arttext&pid=S0870-63522010000300006 |
url |
http://scielo.pt/scielo.php?script=sci_arttext&pid=S0870-63522010000300006 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
http://scielo.pt/scielo.php?script=sci_arttext&pid=S0870-63522010000300006 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Unidade de Silvicultura e Produtos Florestais |
publisher.none.fl_str_mv |
Unidade de Silvicultura e Produtos Florestais |
dc.source.none.fl_str_mv |
Silva Lusitana v.18 n.2 2010 reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137256305328128 |