Some new considerations about double nested graphs
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/15062 |
Resumo: | In the set of all connected graphs with fixed order and size, the graphs with maximal index are nested split graphs, also called threshold graphs. It was recently (and independently) observed in [F.K.Bell, D. Cvetkovi´c, P. Rowlinson, S.K. Simi´c, Graphs for which the largest eigenvalue is minimal, II, Linear Algebra Appl. 429 (2008)] and [A. Bhattacharya, S. Friedland, U.N. Peled, On the first eigenvalue of bipartite graphs, Electron. J. Combin. 15 (2008), #144] that double nested graphs, also called bipartite chain graphs, play the same role within class of bipartite graphs. In this paper we study some structural and spectral features of double nested graphs. In studying the spectrum of double nested graphs we rather consider some weighted nonnegative matrices (of significantly less order) which preserve all positive eigenvalues of former ones. Moreover, their inverse matrices appear to be tridiagonal. Using this fact we provide several new bounds on the index (largest eigenvalue) of double nested graphs, and also deduce some bounds on eigenvector components for the index. We conclude the paper by examining the questions related to main versus non-main eigenvalues. |
id |
RCAP_0c82aa96f0ff5c4f31de3a9ce989c516 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/15062 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Some new considerations about double nested graphsBipartite graphDouble nested graphLargest eigenvalueSpectral boundsMain eigenvalueIn the set of all connected graphs with fixed order and size, the graphs with maximal index are nested split graphs, also called threshold graphs. It was recently (and independently) observed in [F.K.Bell, D. Cvetkovi´c, P. Rowlinson, S.K. Simi´c, Graphs for which the largest eigenvalue is minimal, II, Linear Algebra Appl. 429 (2008)] and [A. Bhattacharya, S. Friedland, U.N. Peled, On the first eigenvalue of bipartite graphs, Electron. J. Combin. 15 (2008), #144] that double nested graphs, also called bipartite chain graphs, play the same role within class of bipartite graphs. In this paper we study some structural and spectral features of double nested graphs. In studying the spectrum of double nested graphs we rather consider some weighted nonnegative matrices (of significantly less order) which preserve all positive eigenvalues of former ones. Moreover, their inverse matrices appear to be tridiagonal. Using this fact we provide several new bounds on the index (largest eigenvalue) of double nested graphs, and also deduce some bounds on eigenvector components for the index. We conclude the paper by examining the questions related to main versus non-main eigenvalues.Elsevier2018-07-20T14:00:51Z2015-10-15T00:00:00Z2015-10-152016-10-14T11:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/15062eng0024-379510.1016/j.laa.2015.06.010Andelic, M.Andrade, E.Cardoso, D. M.Fonseca, C. M. daSimic, S. K.Tosic, D. V.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:27:39Zoai:ria.ua.pt:10773/15062Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:50:27.515966Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Some new considerations about double nested graphs |
title |
Some new considerations about double nested graphs |
spellingShingle |
Some new considerations about double nested graphs Andelic, M. Bipartite graph Double nested graph Largest eigenvalue Spectral bounds Main eigenvalue |
title_short |
Some new considerations about double nested graphs |
title_full |
Some new considerations about double nested graphs |
title_fullStr |
Some new considerations about double nested graphs |
title_full_unstemmed |
Some new considerations about double nested graphs |
title_sort |
Some new considerations about double nested graphs |
author |
Andelic, M. |
author_facet |
Andelic, M. Andrade, E. Cardoso, D. M. Fonseca, C. M. da Simic, S. K. Tosic, D. V. |
author_role |
author |
author2 |
Andrade, E. Cardoso, D. M. Fonseca, C. M. da Simic, S. K. Tosic, D. V. |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Andelic, M. Andrade, E. Cardoso, D. M. Fonseca, C. M. da Simic, S. K. Tosic, D. V. |
dc.subject.por.fl_str_mv |
Bipartite graph Double nested graph Largest eigenvalue Spectral bounds Main eigenvalue |
topic |
Bipartite graph Double nested graph Largest eigenvalue Spectral bounds Main eigenvalue |
description |
In the set of all connected graphs with fixed order and size, the graphs with maximal index are nested split graphs, also called threshold graphs. It was recently (and independently) observed in [F.K.Bell, D. Cvetkovi´c, P. Rowlinson, S.K. Simi´c, Graphs for which the largest eigenvalue is minimal, II, Linear Algebra Appl. 429 (2008)] and [A. Bhattacharya, S. Friedland, U.N. Peled, On the first eigenvalue of bipartite graphs, Electron. J. Combin. 15 (2008), #144] that double nested graphs, also called bipartite chain graphs, play the same role within class of bipartite graphs. In this paper we study some structural and spectral features of double nested graphs. In studying the spectrum of double nested graphs we rather consider some weighted nonnegative matrices (of significantly less order) which preserve all positive eigenvalues of former ones. Moreover, their inverse matrices appear to be tridiagonal. Using this fact we provide several new bounds on the index (largest eigenvalue) of double nested graphs, and also deduce some bounds on eigenvector components for the index. We conclude the paper by examining the questions related to main versus non-main eigenvalues. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-10-15T00:00:00Z 2015-10-15 2016-10-14T11:00:00Z 2018-07-20T14:00:51Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/15062 |
url |
http://hdl.handle.net/10773/15062 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0024-3795 10.1016/j.laa.2015.06.010 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137554567528448 |