Some new considerations about double nested graphs

Detalhes bibliográficos
Autor(a) principal: Andelic, M.
Data de Publicação: 2015
Outros Autores: Andrade, E., Cardoso, D. M., Fonseca, C. M. da, Simic, S. K., Tosic, D. V.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/15062
Resumo: In the set of all connected graphs with fixed order and size, the graphs with maximal index are nested split graphs, also called threshold graphs. It was recently (and independently) observed in [F.K.Bell, D. Cvetkovi´c, P. Rowlinson, S.K. Simi´c, Graphs for which the largest eigenvalue is minimal, II, Linear Algebra Appl. 429 (2008)] and [A. Bhattacharya, S. Friedland, U.N. Peled, On the first eigenvalue of bipartite graphs, Electron. J. Combin. 15 (2008), #144] that double nested graphs, also called bipartite chain graphs, play the same role within class of bipartite graphs. In this paper we study some structural and spectral features of double nested graphs. In studying the spectrum of double nested graphs we rather consider some weighted nonnegative matrices (of significantly less order) which preserve all positive eigenvalues of former ones. Moreover, their inverse matrices appear to be tridiagonal. Using this fact we provide several new bounds on the index (largest eigenvalue) of double nested graphs, and also deduce some bounds on eigenvector components for the index. We conclude the paper by examining the questions related to main versus non-main eigenvalues.
id RCAP_0c82aa96f0ff5c4f31de3a9ce989c516
oai_identifier_str oai:ria.ua.pt:10773/15062
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Some new considerations about double nested graphsBipartite graphDouble nested graphLargest eigenvalueSpectral boundsMain eigenvalueIn the set of all connected graphs with fixed order and size, the graphs with maximal index are nested split graphs, also called threshold graphs. It was recently (and independently) observed in [F.K.Bell, D. Cvetkovi´c, P. Rowlinson, S.K. Simi´c, Graphs for which the largest eigenvalue is minimal, II, Linear Algebra Appl. 429 (2008)] and [A. Bhattacharya, S. Friedland, U.N. Peled, On the first eigenvalue of bipartite graphs, Electron. J. Combin. 15 (2008), #144] that double nested graphs, also called bipartite chain graphs, play the same role within class of bipartite graphs. In this paper we study some structural and spectral features of double nested graphs. In studying the spectrum of double nested graphs we rather consider some weighted nonnegative matrices (of significantly less order) which preserve all positive eigenvalues of former ones. Moreover, their inverse matrices appear to be tridiagonal. Using this fact we provide several new bounds on the index (largest eigenvalue) of double nested graphs, and also deduce some bounds on eigenvector components for the index. We conclude the paper by examining the questions related to main versus non-main eigenvalues.Elsevier2018-07-20T14:00:51Z2015-10-15T00:00:00Z2015-10-152016-10-14T11:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/15062eng0024-379510.1016/j.laa.2015.06.010Andelic, M.Andrade, E.Cardoso, D. M.Fonseca, C. M. daSimic, S. K.Tosic, D. V.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:27:39Zoai:ria.ua.pt:10773/15062Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:50:27.515966Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Some new considerations about double nested graphs
title Some new considerations about double nested graphs
spellingShingle Some new considerations about double nested graphs
Andelic, M.
Bipartite graph
Double nested graph
Largest eigenvalue
Spectral bounds
Main eigenvalue
title_short Some new considerations about double nested graphs
title_full Some new considerations about double nested graphs
title_fullStr Some new considerations about double nested graphs
title_full_unstemmed Some new considerations about double nested graphs
title_sort Some new considerations about double nested graphs
author Andelic, M.
author_facet Andelic, M.
Andrade, E.
Cardoso, D. M.
Fonseca, C. M. da
Simic, S. K.
Tosic, D. V.
author_role author
author2 Andrade, E.
Cardoso, D. M.
Fonseca, C. M. da
Simic, S. K.
Tosic, D. V.
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Andelic, M.
Andrade, E.
Cardoso, D. M.
Fonseca, C. M. da
Simic, S. K.
Tosic, D. V.
dc.subject.por.fl_str_mv Bipartite graph
Double nested graph
Largest eigenvalue
Spectral bounds
Main eigenvalue
topic Bipartite graph
Double nested graph
Largest eigenvalue
Spectral bounds
Main eigenvalue
description In the set of all connected graphs with fixed order and size, the graphs with maximal index are nested split graphs, also called threshold graphs. It was recently (and independently) observed in [F.K.Bell, D. Cvetkovi´c, P. Rowlinson, S.K. Simi´c, Graphs for which the largest eigenvalue is minimal, II, Linear Algebra Appl. 429 (2008)] and [A. Bhattacharya, S. Friedland, U.N. Peled, On the first eigenvalue of bipartite graphs, Electron. J. Combin. 15 (2008), #144] that double nested graphs, also called bipartite chain graphs, play the same role within class of bipartite graphs. In this paper we study some structural and spectral features of double nested graphs. In studying the spectrum of double nested graphs we rather consider some weighted nonnegative matrices (of significantly less order) which preserve all positive eigenvalues of former ones. Moreover, their inverse matrices appear to be tridiagonal. Using this fact we provide several new bounds on the index (largest eigenvalue) of double nested graphs, and also deduce some bounds on eigenvector components for the index. We conclude the paper by examining the questions related to main versus non-main eigenvalues.
publishDate 2015
dc.date.none.fl_str_mv 2015-10-15T00:00:00Z
2015-10-15
2016-10-14T11:00:00Z
2018-07-20T14:00:51Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/15062
url http://hdl.handle.net/10773/15062
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0024-3795
10.1016/j.laa.2015.06.010
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137554567528448