The n-Queens graph and its generalizations
Autor(a) principal: | |
---|---|
Data de Publicação: | 2024 |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/41899 |
Resumo: | This thesis presents some spectral results related to the n-Queens graph – a graph associated with the n × n chessboard, with n ∈ N – and its generalizations. A lower (and upper) bound is established for the least eigenvalue of a graph, using the concept of edge clique partition. Applying this bound, throughout the thesis, lower bounds are established for the least eigenvalue of the n-Queens graph and of some of its generalizations – for m × n rectangular chessboards ( Q (m, n )) and n × n × n chessboards ( Q (n, n, n )), m, n ∈ N. Other integer eigenvalues for these graphs, as well as eigenvectors associated with them, are studied. Finally, an integral graph – a graph whose spectrum is entirely composed of integer eigenvalues – is introduced which is, like Q (n, n ) and Q (m, n ), an induced subgraph of Q (n, n, n ). |
id |
RCAP_ea3ca7d4a04c9acccb10a92f4a6fab18 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/41899 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
The n-Queens graph and its generalizationsGraph spectraInteger eigenvaluesLeast eigenvalue of a graphEdge clique partitionQueens graphIntegral graphThis thesis presents some spectral results related to the n-Queens graph – a graph associated with the n × n chessboard, with n ∈ N – and its generalizations. A lower (and upper) bound is established for the least eigenvalue of a graph, using the concept of edge clique partition. Applying this bound, throughout the thesis, lower bounds are established for the least eigenvalue of the n-Queens graph and of some of its generalizations – for m × n rectangular chessboards ( Q (m, n )) and n × n × n chessboards ( Q (n, n, n )), m, n ∈ N. Other integer eigenvalues for these graphs, as well as eigenvectors associated with them, are studied. Finally, an integral graph – a graph whose spectrum is entirely composed of integer eigenvalues – is introduced which is, like Q (n, n ) and Q (m, n ), an induced subgraph of Q (n, n, n ).Nesta tese são apresentados resultados espetrais relativos ao grafo das n-Rainhas, n ∈ N, e a algumas das suas generalizações. É estabelecido um limite inferior (e superior) para o menor valor próprio de um grafo, utilizando o conceito de partição do conjunto de aresta por cliques. Com recurso a este limite, ao longo da tese são estabelecidos limites inferiores para o menor valor próprio do grafo das n-Rainhas Q(n, n) – um grafo associado ao tabuleiro de xadrez n × n, com n ∈ N – e para algumas das suas generalizações para tabuleiros retangulares m × n (Q(m, n)) e cúbicos n × n × n (Q(n, n, n)), m ∈ N. Outros valores próprios inteiros destes grafos, assim como vetores próprios associados a estes, são estudados. Por fim, é introduzido uma família de grafos integrais (grafo cujo espetro é unicamente composto por valores próprios inteiros) que, tal como Q(n, n) e Q(m, n), é um subgrafo induzido de Q(n, n, n).2025-04-07T00:00:00Z2024-03-27T00:00:00Z2024-03-27doctoral thesisinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10773/41899engCosta, Inês Filipa Serôdioinfo:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-27T01:46:43Zoai:ria.ua.pt:10773/41899Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-27T01:46:43Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
The n-Queens graph and its generalizations |
title |
The n-Queens graph and its generalizations |
spellingShingle |
The n-Queens graph and its generalizations Costa, Inês Filipa Serôdio Graph spectra Integer eigenvalues Least eigenvalue of a graph Edge clique partition Queens graph Integral graph |
title_short |
The n-Queens graph and its generalizations |
title_full |
The n-Queens graph and its generalizations |
title_fullStr |
The n-Queens graph and its generalizations |
title_full_unstemmed |
The n-Queens graph and its generalizations |
title_sort |
The n-Queens graph and its generalizations |
author |
Costa, Inês Filipa Serôdio |
author_facet |
Costa, Inês Filipa Serôdio |
author_role |
author |
dc.contributor.author.fl_str_mv |
Costa, Inês Filipa Serôdio |
dc.subject.por.fl_str_mv |
Graph spectra Integer eigenvalues Least eigenvalue of a graph Edge clique partition Queens graph Integral graph |
topic |
Graph spectra Integer eigenvalues Least eigenvalue of a graph Edge clique partition Queens graph Integral graph |
description |
This thesis presents some spectral results related to the n-Queens graph – a graph associated with the n × n chessboard, with n ∈ N – and its generalizations. A lower (and upper) bound is established for the least eigenvalue of a graph, using the concept of edge clique partition. Applying this bound, throughout the thesis, lower bounds are established for the least eigenvalue of the n-Queens graph and of some of its generalizations – for m × n rectangular chessboards ( Q (m, n )) and n × n × n chessboards ( Q (n, n, n )), m, n ∈ N. Other integer eigenvalues for these graphs, as well as eigenvectors associated with them, are studied. Finally, an integral graph – a graph whose spectrum is entirely composed of integer eigenvalues – is introduced which is, like Q (n, n ) and Q (m, n ), an induced subgraph of Q (n, n, n ). |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-03-27T00:00:00Z 2024-03-27 2025-04-07T00:00:00Z |
dc.type.driver.fl_str_mv |
doctoral thesis |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/41899 |
url |
http://hdl.handle.net/10773/41899 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
eu_rights_str_mv |
embargoedAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817546018182397952 |