The n-Queens graph and its generalizations

Detalhes bibliográficos
Autor(a) principal: Costa, Inês Filipa Serôdio
Data de Publicação: 2024
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/41899
Resumo: This thesis presents some spectral results related to the n-Queens graph – a graph associated with the n × n chessboard, with n ∈ N – and its generalizations. A lower (and upper) bound is established for the least eigenvalue of a graph, using the concept of edge clique partition. Applying this bound, throughout the thesis, lower bounds are established for the least eigenvalue of the n-Queens graph and of some of its generalizations – for m × n rectangular chessboards ( Q (m, n )) and n × n × n chessboards ( Q (n, n, n )), m, n ∈ N. Other integer eigenvalues for these graphs, as well as eigenvectors associated with them, are studied. Finally, an integral graph – a graph whose spectrum is entirely composed of integer eigenvalues – is introduced which is, like Q (n, n ) and Q (m, n ), an induced subgraph of Q (n, n, n ).
id RCAP_ea3ca7d4a04c9acccb10a92f4a6fab18
oai_identifier_str oai:ria.ua.pt:10773/41899
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling The n-Queens graph and its generalizationsGraph spectraInteger eigenvaluesLeast eigenvalue of a graphEdge clique partitionQueens graphIntegral graphThis thesis presents some spectral results related to the n-Queens graph – a graph associated with the n × n chessboard, with n ∈ N – and its generalizations. A lower (and upper) bound is established for the least eigenvalue of a graph, using the concept of edge clique partition. Applying this bound, throughout the thesis, lower bounds are established for the least eigenvalue of the n-Queens graph and of some of its generalizations – for m × n rectangular chessboards ( Q (m, n )) and n × n × n chessboards ( Q (n, n, n )), m, n ∈ N. Other integer eigenvalues for these graphs, as well as eigenvectors associated with them, are studied. Finally, an integral graph – a graph whose spectrum is entirely composed of integer eigenvalues – is introduced which is, like Q (n, n ) and Q (m, n ), an induced subgraph of Q (n, n, n ).Nesta tese são apresentados resultados espetrais relativos ao grafo das n-Rainhas, n ∈ N, e a algumas das suas generalizações. É estabelecido um limite inferior (e superior) para o menor valor próprio de um grafo, utilizando o conceito de partição do conjunto de aresta por cliques. Com recurso a este limite, ao longo da tese são estabelecidos limites inferiores para o menor valor próprio do grafo das n-Rainhas Q(n, n) – um grafo associado ao tabuleiro de xadrez n × n, com n ∈ N – e para algumas das suas generalizações para tabuleiros retangulares m × n (Q(m, n)) e cúbicos n × n × n (Q(n, n, n)), m ∈ N. Outros valores próprios inteiros destes grafos, assim como vetores próprios associados a estes, são estudados. Por fim, é introduzido uma família de grafos integrais (grafo cujo espetro é unicamente composto por valores próprios inteiros) que, tal como Q(n, n) e Q(m, n), é um subgrafo induzido de Q(n, n, n).2025-04-07T00:00:00Z2024-03-27T00:00:00Z2024-03-27doctoral thesisinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10773/41899engCosta, Inês Filipa Serôdioinfo:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-27T01:46:43Zoai:ria.ua.pt:10773/41899Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-27T01:46:43Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv The n-Queens graph and its generalizations
title The n-Queens graph and its generalizations
spellingShingle The n-Queens graph and its generalizations
Costa, Inês Filipa Serôdio
Graph spectra
Integer eigenvalues
Least eigenvalue of a graph
Edge clique partition
Queens graph
Integral graph
title_short The n-Queens graph and its generalizations
title_full The n-Queens graph and its generalizations
title_fullStr The n-Queens graph and its generalizations
title_full_unstemmed The n-Queens graph and its generalizations
title_sort The n-Queens graph and its generalizations
author Costa, Inês Filipa Serôdio
author_facet Costa, Inês Filipa Serôdio
author_role author
dc.contributor.author.fl_str_mv Costa, Inês Filipa Serôdio
dc.subject.por.fl_str_mv Graph spectra
Integer eigenvalues
Least eigenvalue of a graph
Edge clique partition
Queens graph
Integral graph
topic Graph spectra
Integer eigenvalues
Least eigenvalue of a graph
Edge clique partition
Queens graph
Integral graph
description This thesis presents some spectral results related to the n-Queens graph – a graph associated with the n × n chessboard, with n ∈ N – and its generalizations. A lower (and upper) bound is established for the least eigenvalue of a graph, using the concept of edge clique partition. Applying this bound, throughout the thesis, lower bounds are established for the least eigenvalue of the n-Queens graph and of some of its generalizations – for m × n rectangular chessboards ( Q (m, n )) and n × n × n chessboards ( Q (n, n, n )), m, n ∈ N. Other integer eigenvalues for these graphs, as well as eigenvectors associated with them, are studied. Finally, an integral graph – a graph whose spectrum is entirely composed of integer eigenvalues – is introduced which is, like Q (n, n ) and Q (m, n ), an induced subgraph of Q (n, n, n ).
publishDate 2024
dc.date.none.fl_str_mv 2024-03-27T00:00:00Z
2024-03-27
2025-04-07T00:00:00Z
dc.type.driver.fl_str_mv doctoral thesis
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/41899
url http://hdl.handle.net/10773/41899
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv mluisa.alvim@gmail.com
_version_ 1817546018182397952