3D Dynamic Simulation of Heat Conduction through a Building Corner Using a BEM Model in the Frequency Domain
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10316/106884 https://doi.org/10.3390/en12234595 |
Resumo: | This paper sets out a three-dimensional (3D) boundary element method (BEM) formulation in the frequency domain to simulate heat transfer through a point thermal bridge (PTB) at a corner in a building envelope. The main purpose was to quantify the dynamic e ect of a geometrical PTB in terms of distribution of temperatures and heat fluxes, which is useful for evaluating moisture condensation risk. The numerical model is first validated experimentally using a hot box to measure the dynamic heat behavior of a 3D timber building corner. The proposed model is then used to study the dynamic thermal bridging e ect in the vicinity of a 3D concrete corner. Given the importance of the risk of condensation, this study looks at the influence of an insulating material and its position on the temperature and heat flux distribution through the PTB under steady state and dynamic conditions. |
id |
RCAP_0cfacd17594699726fcb77f4a3bb128d |
---|---|
oai_identifier_str |
oai:estudogeral.uc.pt:10316/106884 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
3D Dynamic Simulation of Heat Conduction through a Building Corner Using a BEM Model in the Frequency Domainpoint thermal bridges3D building cornerdynamic heat transferboundary element methodfrequency domainhot box measurementsThis paper sets out a three-dimensional (3D) boundary element method (BEM) formulation in the frequency domain to simulate heat transfer through a point thermal bridge (PTB) at a corner in a building envelope. The main purpose was to quantify the dynamic e ect of a geometrical PTB in terms of distribution of temperatures and heat fluxes, which is useful for evaluating moisture condensation risk. The numerical model is first validated experimentally using a hot box to measure the dynamic heat behavior of a 3D timber building corner. The proposed model is then used to study the dynamic thermal bridging e ect in the vicinity of a 3D concrete corner. Given the importance of the risk of condensation, this study looks at the influence of an insulating material and its position on the temperature and heat flux distribution through the PTB under steady state and dynamic conditions.MDPI2019info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/106884http://hdl.handle.net/10316/106884https://doi.org/10.3390/en12234595eng1996-1073Simões, NunoPrata, JoanaTadeu, Antónioinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-04-28T11:00:38Zoai:estudogeral.uc.pt:10316/106884Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:23:17.092722Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
3D Dynamic Simulation of Heat Conduction through a Building Corner Using a BEM Model in the Frequency Domain |
title |
3D Dynamic Simulation of Heat Conduction through a Building Corner Using a BEM Model in the Frequency Domain |
spellingShingle |
3D Dynamic Simulation of Heat Conduction through a Building Corner Using a BEM Model in the Frequency Domain Simões, Nuno point thermal bridges 3D building corner dynamic heat transfer boundary element method frequency domain hot box measurements |
title_short |
3D Dynamic Simulation of Heat Conduction through a Building Corner Using a BEM Model in the Frequency Domain |
title_full |
3D Dynamic Simulation of Heat Conduction through a Building Corner Using a BEM Model in the Frequency Domain |
title_fullStr |
3D Dynamic Simulation of Heat Conduction through a Building Corner Using a BEM Model in the Frequency Domain |
title_full_unstemmed |
3D Dynamic Simulation of Heat Conduction through a Building Corner Using a BEM Model in the Frequency Domain |
title_sort |
3D Dynamic Simulation of Heat Conduction through a Building Corner Using a BEM Model in the Frequency Domain |
author |
Simões, Nuno |
author_facet |
Simões, Nuno Prata, Joana Tadeu, António |
author_role |
author |
author2 |
Prata, Joana Tadeu, António |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Simões, Nuno Prata, Joana Tadeu, António |
dc.subject.por.fl_str_mv |
point thermal bridges 3D building corner dynamic heat transfer boundary element method frequency domain hot box measurements |
topic |
point thermal bridges 3D building corner dynamic heat transfer boundary element method frequency domain hot box measurements |
description |
This paper sets out a three-dimensional (3D) boundary element method (BEM) formulation in the frequency domain to simulate heat transfer through a point thermal bridge (PTB) at a corner in a building envelope. The main purpose was to quantify the dynamic e ect of a geometrical PTB in terms of distribution of temperatures and heat fluxes, which is useful for evaluating moisture condensation risk. The numerical model is first validated experimentally using a hot box to measure the dynamic heat behavior of a 3D timber building corner. The proposed model is then used to study the dynamic thermal bridging e ect in the vicinity of a 3D concrete corner. Given the importance of the risk of condensation, this study looks at the influence of an insulating material and its position on the temperature and heat flux distribution through the PTB under steady state and dynamic conditions. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10316/106884 http://hdl.handle.net/10316/106884 https://doi.org/10.3390/en12234595 |
url |
http://hdl.handle.net/10316/106884 https://doi.org/10.3390/en12234595 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1996-1073 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
MDPI |
publisher.none.fl_str_mv |
MDPI |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799134120229470208 |