3D Dynamic Simulation of Heat Conduction through a Building Corner Using a BEM Model in the Frequency Domain

Detalhes bibliográficos
Autor(a) principal: Simões, Nuno
Data de Publicação: 2019
Outros Autores: Prata, Joana, Tadeu, António
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10316/106884
https://doi.org/10.3390/en12234595
Resumo: This paper sets out a three-dimensional (3D) boundary element method (BEM) formulation in the frequency domain to simulate heat transfer through a point thermal bridge (PTB) at a corner in a building envelope. The main purpose was to quantify the dynamic e ect of a geometrical PTB in terms of distribution of temperatures and heat fluxes, which is useful for evaluating moisture condensation risk. The numerical model is first validated experimentally using a hot box to measure the dynamic heat behavior of a 3D timber building corner. The proposed model is then used to study the dynamic thermal bridging e ect in the vicinity of a 3D concrete corner. Given the importance of the risk of condensation, this study looks at the influence of an insulating material and its position on the temperature and heat flux distribution through the PTB under steady state and dynamic conditions.
id RCAP_0cfacd17594699726fcb77f4a3bb128d
oai_identifier_str oai:estudogeral.uc.pt:10316/106884
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling 3D Dynamic Simulation of Heat Conduction through a Building Corner Using a BEM Model in the Frequency Domainpoint thermal bridges3D building cornerdynamic heat transferboundary element methodfrequency domainhot box measurementsThis paper sets out a three-dimensional (3D) boundary element method (BEM) formulation in the frequency domain to simulate heat transfer through a point thermal bridge (PTB) at a corner in a building envelope. The main purpose was to quantify the dynamic e ect of a geometrical PTB in terms of distribution of temperatures and heat fluxes, which is useful for evaluating moisture condensation risk. The numerical model is first validated experimentally using a hot box to measure the dynamic heat behavior of a 3D timber building corner. The proposed model is then used to study the dynamic thermal bridging e ect in the vicinity of a 3D concrete corner. Given the importance of the risk of condensation, this study looks at the influence of an insulating material and its position on the temperature and heat flux distribution through the PTB under steady state and dynamic conditions.MDPI2019info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/106884http://hdl.handle.net/10316/106884https://doi.org/10.3390/en12234595eng1996-1073Simões, NunoPrata, JoanaTadeu, Antónioinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-04-28T11:00:38Zoai:estudogeral.uc.pt:10316/106884Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:23:17.092722Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv 3D Dynamic Simulation of Heat Conduction through a Building Corner Using a BEM Model in the Frequency Domain
title 3D Dynamic Simulation of Heat Conduction through a Building Corner Using a BEM Model in the Frequency Domain
spellingShingle 3D Dynamic Simulation of Heat Conduction through a Building Corner Using a BEM Model in the Frequency Domain
Simões, Nuno
point thermal bridges
3D building corner
dynamic heat transfer
boundary element method
frequency domain
hot box measurements
title_short 3D Dynamic Simulation of Heat Conduction through a Building Corner Using a BEM Model in the Frequency Domain
title_full 3D Dynamic Simulation of Heat Conduction through a Building Corner Using a BEM Model in the Frequency Domain
title_fullStr 3D Dynamic Simulation of Heat Conduction through a Building Corner Using a BEM Model in the Frequency Domain
title_full_unstemmed 3D Dynamic Simulation of Heat Conduction through a Building Corner Using a BEM Model in the Frequency Domain
title_sort 3D Dynamic Simulation of Heat Conduction through a Building Corner Using a BEM Model in the Frequency Domain
author Simões, Nuno
author_facet Simões, Nuno
Prata, Joana
Tadeu, António
author_role author
author2 Prata, Joana
Tadeu, António
author2_role author
author
dc.contributor.author.fl_str_mv Simões, Nuno
Prata, Joana
Tadeu, António
dc.subject.por.fl_str_mv point thermal bridges
3D building corner
dynamic heat transfer
boundary element method
frequency domain
hot box measurements
topic point thermal bridges
3D building corner
dynamic heat transfer
boundary element method
frequency domain
hot box measurements
description This paper sets out a three-dimensional (3D) boundary element method (BEM) formulation in the frequency domain to simulate heat transfer through a point thermal bridge (PTB) at a corner in a building envelope. The main purpose was to quantify the dynamic e ect of a geometrical PTB in terms of distribution of temperatures and heat fluxes, which is useful for evaluating moisture condensation risk. The numerical model is first validated experimentally using a hot box to measure the dynamic heat behavior of a 3D timber building corner. The proposed model is then used to study the dynamic thermal bridging e ect in the vicinity of a 3D concrete corner. Given the importance of the risk of condensation, this study looks at the influence of an insulating material and its position on the temperature and heat flux distribution through the PTB under steady state and dynamic conditions.
publishDate 2019
dc.date.none.fl_str_mv 2019
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10316/106884
http://hdl.handle.net/10316/106884
https://doi.org/10.3390/en12234595
url http://hdl.handle.net/10316/106884
https://doi.org/10.3390/en12234595
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1996-1073
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv MDPI
publisher.none.fl_str_mv MDPI
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799134120229470208