In situ interlayer hot forging arc-based directed energy deposition of Inconel® 625

Detalhes bibliográficos
Autor(a) principal: Farias, Francisco Werley Cipriano
Data de Publicação: 2023
Outros Autores: Duarte, Valdemar R., Felice, Igor Oliveira, Filho, João da Cruz Payão, Schell, Norbert, Maawad, Emad, Avila, J. A., Li, J. Y., Zhang, Y., Santos, T. G., Oliveira, J. P.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/153094
Resumo: JPO acknowledges funding by national funds from FCT - Fundação para a Ciência e a Tecnologia, Portugal, I.P. in the scope of the project LA/P/0037/2020. The authors acknowledge DESY (Hamburg, Germany), a member of the Helmholtz Association HGF, for the provision of experimental facilities. Beamtime was allocated for proposal I-20210986 EC. This activity has received funding from the European Institute of Innovation and Technology (EIT) Raw Materials through the project Smart WAAM: Microstructural Engineering and Integrated Non-Destructive Testing. YZ acknowledges the National Natural Science Foundation of China (51601091), the Natural Science Foundation of Jiangsu Province (BK 20160826), the Six Talent Peaks Project of Jiangsu Province (2017-XCL-051), the Fundamental Research Funds for the Central Universities (30917011106), and Key Research and Development Plan of Jiangsu Province (BE 2020085). Funding Information: Authors acknowledge the Portuguese Fundação para a Ciência e a Tecnologia (FCT – MCTES) , Portugal, for its financial support via the project UID/EMS/00667/2019 (UNIDEMI). JPO acknowledges funding by national funds from FCT - Fundação para a Ciência e a Tecnologia, Portugal, I.P., in the scope of the projects LA/P/0037/2020 , UIDP/50025/2020 and UIDB/50025/2020 of the Associate Laboratory Institute of Nanostructures, Nanomodelling and Nanofabrication – i3N. FWCF acknowledges Fundação para a Ciência e a Tecnologia ( FCT-MCTES ), Portugal, for funding the Ph.D. Grant 2022.13870. BD . The authors acknowledge DESY (Hamburg, Germany), a member of the Helmholtz Association HGF, for the provision of experimental facilities. Beamtime was allocated for proposal I-20210986 EC. The research leading to this result has been supported by the project CALIPSOplus under the Grant Agreement 730872 from the EU Framework Programme for Research and Innovation HORIZON 2020. This activity has received funding from the European Institute of Innovation and Technology (EIT) Raw Materials through the project Smart WAAM: Microstructural Engineering and Integrated Non-Destructive Testing. YZ acknowledges the National Natural Science Foundation of China (51601091), the Natural Science Foundation of Jiangsu Province (BK 20160826), the Six Talent Peaks Project of Jiangsu Province (2017-XCL-051), the Fundamental Research Funds for the Central Universities (30917011106), and Key Research and Development Plan of Jiangsu Province (BE 2020085). Publisher Copyright: © 2023 The Authors
id RCAP_0f3420abb42572b0b8b457df21f64235
oai_identifier_str oai:run.unl.pt:10362/153094
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling In situ interlayer hot forging arc-based directed energy deposition of Inconel® 625process development and microstructure effectsEquiaxed grainsHeat treatmentHot forgingHybrid processInconelWire arc additive manufacturingBiomedical EngineeringMaterials Science(all)Engineering (miscellaneous)Industrial and Manufacturing EngineeringJPO acknowledges funding by national funds from FCT - Fundação para a Ciência e a Tecnologia, Portugal, I.P. in the scope of the project LA/P/0037/2020. The authors acknowledge DESY (Hamburg, Germany), a member of the Helmholtz Association HGF, for the provision of experimental facilities. Beamtime was allocated for proposal I-20210986 EC. This activity has received funding from the European Institute of Innovation and Technology (EIT) Raw Materials through the project Smart WAAM: Microstructural Engineering and Integrated Non-Destructive Testing. YZ acknowledges the National Natural Science Foundation of China (51601091), the Natural Science Foundation of Jiangsu Province (BK 20160826), the Six Talent Peaks Project of Jiangsu Province (2017-XCL-051), the Fundamental Research Funds for the Central Universities (30917011106), and Key Research and Development Plan of Jiangsu Province (BE 2020085). Funding Information: Authors acknowledge the Portuguese Fundação para a Ciência e a Tecnologia (FCT – MCTES) , Portugal, for its financial support via the project UID/EMS/00667/2019 (UNIDEMI). JPO acknowledges funding by national funds from FCT - Fundação para a Ciência e a Tecnologia, Portugal, I.P., in the scope of the projects LA/P/0037/2020 , UIDP/50025/2020 and UIDB/50025/2020 of the Associate Laboratory Institute of Nanostructures, Nanomodelling and Nanofabrication – i3N. FWCF acknowledges Fundação para a Ciência e a Tecnologia ( FCT-MCTES ), Portugal, for funding the Ph.D. Grant 2022.13870. BD . The authors acknowledge DESY (Hamburg, Germany), a member of the Helmholtz Association HGF, for the provision of experimental facilities. Beamtime was allocated for proposal I-20210986 EC. The research leading to this result has been supported by the project CALIPSOplus under the Grant Agreement 730872 from the EU Framework Programme for Research and Innovation HORIZON 2020. This activity has received funding from the European Institute of Innovation and Technology (EIT) Raw Materials through the project Smart WAAM: Microstructural Engineering and Integrated Non-Destructive Testing. YZ acknowledges the National Natural Science Foundation of China (51601091), the Natural Science Foundation of Jiangsu Province (BK 20160826), the Six Talent Peaks Project of Jiangsu Province (2017-XCL-051), the Fundamental Research Funds for the Central Universities (30917011106), and Key Research and Development Plan of Jiangsu Province (BE 2020085). Publisher Copyright: © 2023 The AuthorsThe typical as-built coarse and cube-oriented microstructure of Inconel® 625 parts fabricated via arc-based directed energy deposition (DED) induces anisotropic mechanical behavior, reducing the potential applications of arc-based DEDed Inconel® 625 in critical components. In this sense, the present work aimed to reduce the grain size and texture by applying an in situ interlayer hot forging (HF) combined with post-deposition heat treatments (PDHT). The produced samples were characterized through optical microscopy, scanning electron microscopy coupled with electron backscatter diffraction, synchrotron X-ray diffraction, and Vickers microhardness. Also, a dedicated deformation tool was designed and optimized via a finite element method model considering the processing conditions and thermal cycle experienced by the material. It is shown that the in situ interlayer deformation induced a thermo-mechanical-affected zone (dynamic recrystallized + remaining deformation, with a height of ≈ 1.2 mm) at the bead top surface, which resulted in thinner aligned grains and lower texture index in relation to as-built DED counterpart. In addition, the effects of solution (1100 °C/ 1 h) and stabilization (980 °C/ 1 h) PDHTs on the Inconel® 625 HF-DEDed parts were also analyzed, which promoted fine and equiaxed static recrystallized grains without cube orientation, comparable to wrought material. Therefore, the HF-DED process significantly refined the typical coarse and highly oriented microstructure of Ni-based superalloys obtained by arc-based DED.DEMI - Departamento de Engenharia Mecânica e IndustrialUNIDEMI - Unidade de Investigação e Desenvolvimento em Engenharia Mecânica e IndustrialCENIMAT-i3N - Centro de Investigação de Materiais (Lab. Associado I3N)DCM - Departamento de Ciência dos MateriaisRUNFarias, Francisco Werley CiprianoDuarte, Valdemar R.Felice, Igor OliveiraFilho, João da Cruz PayãoSchell, NorbertMaawad, EmadAvila, J. A.Li, J. Y.Zhang, Y.Santos, T. G.Oliveira, J. P.2023-05-23T22:19:05Z2023-03-252023-03-25T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article16application/pdfhttp://hdl.handle.net/10362/153094eng2214-8604PURE: 61286860https://doi.org/10.1016/j.addma.2023.103476info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:35:40Zoai:run.unl.pt:10362/153094Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:55:10.390600Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv In situ interlayer hot forging arc-based directed energy deposition of Inconel® 625
process development and microstructure effects
title In situ interlayer hot forging arc-based directed energy deposition of Inconel® 625
spellingShingle In situ interlayer hot forging arc-based directed energy deposition of Inconel® 625
Farias, Francisco Werley Cipriano
Equiaxed grains
Heat treatment
Hot forging
Hybrid process
Inconel
Wire arc additive manufacturing
Biomedical Engineering
Materials Science(all)
Engineering (miscellaneous)
Industrial and Manufacturing Engineering
title_short In situ interlayer hot forging arc-based directed energy deposition of Inconel® 625
title_full In situ interlayer hot forging arc-based directed energy deposition of Inconel® 625
title_fullStr In situ interlayer hot forging arc-based directed energy deposition of Inconel® 625
title_full_unstemmed In situ interlayer hot forging arc-based directed energy deposition of Inconel® 625
title_sort In situ interlayer hot forging arc-based directed energy deposition of Inconel® 625
author Farias, Francisco Werley Cipriano
author_facet Farias, Francisco Werley Cipriano
Duarte, Valdemar R.
Felice, Igor Oliveira
Filho, João da Cruz Payão
Schell, Norbert
Maawad, Emad
Avila, J. A.
Li, J. Y.
Zhang, Y.
Santos, T. G.
Oliveira, J. P.
author_role author
author2 Duarte, Valdemar R.
Felice, Igor Oliveira
Filho, João da Cruz Payão
Schell, Norbert
Maawad, Emad
Avila, J. A.
Li, J. Y.
Zhang, Y.
Santos, T. G.
Oliveira, J. P.
author2_role author
author
author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv DEMI - Departamento de Engenharia Mecânica e Industrial
UNIDEMI - Unidade de Investigação e Desenvolvimento em Engenharia Mecânica e Industrial
CENIMAT-i3N - Centro de Investigação de Materiais (Lab. Associado I3N)
DCM - Departamento de Ciência dos Materiais
RUN
dc.contributor.author.fl_str_mv Farias, Francisco Werley Cipriano
Duarte, Valdemar R.
Felice, Igor Oliveira
Filho, João da Cruz Payão
Schell, Norbert
Maawad, Emad
Avila, J. A.
Li, J. Y.
Zhang, Y.
Santos, T. G.
Oliveira, J. P.
dc.subject.por.fl_str_mv Equiaxed grains
Heat treatment
Hot forging
Hybrid process
Inconel
Wire arc additive manufacturing
Biomedical Engineering
Materials Science(all)
Engineering (miscellaneous)
Industrial and Manufacturing Engineering
topic Equiaxed grains
Heat treatment
Hot forging
Hybrid process
Inconel
Wire arc additive manufacturing
Biomedical Engineering
Materials Science(all)
Engineering (miscellaneous)
Industrial and Manufacturing Engineering
description JPO acknowledges funding by national funds from FCT - Fundação para a Ciência e a Tecnologia, Portugal, I.P. in the scope of the project LA/P/0037/2020. The authors acknowledge DESY (Hamburg, Germany), a member of the Helmholtz Association HGF, for the provision of experimental facilities. Beamtime was allocated for proposal I-20210986 EC. This activity has received funding from the European Institute of Innovation and Technology (EIT) Raw Materials through the project Smart WAAM: Microstructural Engineering and Integrated Non-Destructive Testing. YZ acknowledges the National Natural Science Foundation of China (51601091), the Natural Science Foundation of Jiangsu Province (BK 20160826), the Six Talent Peaks Project of Jiangsu Province (2017-XCL-051), the Fundamental Research Funds for the Central Universities (30917011106), and Key Research and Development Plan of Jiangsu Province (BE 2020085). Funding Information: Authors acknowledge the Portuguese Fundação para a Ciência e a Tecnologia (FCT – MCTES) , Portugal, for its financial support via the project UID/EMS/00667/2019 (UNIDEMI). JPO acknowledges funding by national funds from FCT - Fundação para a Ciência e a Tecnologia, Portugal, I.P., in the scope of the projects LA/P/0037/2020 , UIDP/50025/2020 and UIDB/50025/2020 of the Associate Laboratory Institute of Nanostructures, Nanomodelling and Nanofabrication – i3N. FWCF acknowledges Fundação para a Ciência e a Tecnologia ( FCT-MCTES ), Portugal, for funding the Ph.D. Grant 2022.13870. BD . The authors acknowledge DESY (Hamburg, Germany), a member of the Helmholtz Association HGF, for the provision of experimental facilities. Beamtime was allocated for proposal I-20210986 EC. The research leading to this result has been supported by the project CALIPSOplus under the Grant Agreement 730872 from the EU Framework Programme for Research and Innovation HORIZON 2020. This activity has received funding from the European Institute of Innovation and Technology (EIT) Raw Materials through the project Smart WAAM: Microstructural Engineering and Integrated Non-Destructive Testing. YZ acknowledges the National Natural Science Foundation of China (51601091), the Natural Science Foundation of Jiangsu Province (BK 20160826), the Six Talent Peaks Project of Jiangsu Province (2017-XCL-051), the Fundamental Research Funds for the Central Universities (30917011106), and Key Research and Development Plan of Jiangsu Province (BE 2020085). Publisher Copyright: © 2023 The Authors
publishDate 2023
dc.date.none.fl_str_mv 2023-05-23T22:19:05Z
2023-03-25
2023-03-25T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/153094
url http://hdl.handle.net/10362/153094
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2214-8604
PURE: 61286860
https://doi.org/10.1016/j.addma.2023.103476
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 16
application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799138139444346880