Orthogonal Gyrodecompositions of Real Inner Product Gyrogroups
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.8/5008 |
Resumo: | In this article, we prove an orthogonal decomposition theorem for real inner product gyrogroups, which unify some well-known gyrogroups in the literature: Einstein, M\"{o}bius, Proper Velocity, and Chen's gyrogroups. This leads to the study of left (right) coset partition of a real inner product gyrogroup induced from a subgyrogroup that is a finite dimensional subspace. As~a result, we obtain gyroprojectors onto the subgyrogroup and its orthogonal complement. We~construct also quotient spaces and prove an associated isomorphism theorem. The left (right) cosets are characterized using gyrolines (cogyrolines) together with automorphisms of the subgyrogroup. With~the algebraic structure of the decompositions, we study fiber bundles and sections inherited by the gyroprojectors. Finally, the general theory is exemplified for the aforementioned gyrogroups. |
id |
RCAP_0f52beee518b4bb352baaeaf23078cb6 |
---|---|
oai_identifier_str |
oai:iconline.ipleiria.pt:10400.8/5008 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Orthogonal Gyrodecompositions of Real Inner Product GyrogroupsReceived: 6 May 2020; Accepted: 30 May 2020; Published: dateReal inner product gyrogroupOrthogonal decompositionGyroprojectionCoset spacePartitionsQuotient spaceGyrolinesCogyrolinesfiber bundlesIn this article, we prove an orthogonal decomposition theorem for real inner product gyrogroups, which unify some well-known gyrogroups in the literature: Einstein, M\"{o}bius, Proper Velocity, and Chen's gyrogroups. This leads to the study of left (right) coset partition of a real inner product gyrogroup induced from a subgyrogroup that is a finite dimensional subspace. As~a result, we obtain gyroprojectors onto the subgyrogroup and its orthogonal complement. We~construct also quotient spaces and prove an associated isomorphism theorem. The left (right) cosets are characterized using gyrolines (cogyrolines) together with automorphisms of the subgyrogroup. With~the algebraic structure of the decompositions, we study fiber bundles and sections inherited by the gyroprojectors. Finally, the general theory is exemplified for the aforementioned gyrogroups.MDPIIC-OnlineFerreira, MiltonSuksumran, Teerapong2020-07-15T13:11:52Z2020-06-032020-06-03T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.8/5008engFerreira, M.; Suksumran, T. Orthogonal Gyrodecompositions of Real Inner Product Gyrogroups. Symmetry 2020, 12(6), 941.10.3390/sym12060941info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-17T15:50:26Zoai:iconline.ipleiria.pt:10400.8/5008Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:48:42.370507Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Orthogonal Gyrodecompositions of Real Inner Product Gyrogroups Received: 6 May 2020; Accepted: 30 May 2020; Published: date |
title |
Orthogonal Gyrodecompositions of Real Inner Product Gyrogroups |
spellingShingle |
Orthogonal Gyrodecompositions of Real Inner Product Gyrogroups Ferreira, Milton Real inner product gyrogroup Orthogonal decomposition Gyroprojection Coset space Partitions Quotient space Gyrolines Cogyrolines fiber bundles |
title_short |
Orthogonal Gyrodecompositions of Real Inner Product Gyrogroups |
title_full |
Orthogonal Gyrodecompositions of Real Inner Product Gyrogroups |
title_fullStr |
Orthogonal Gyrodecompositions of Real Inner Product Gyrogroups |
title_full_unstemmed |
Orthogonal Gyrodecompositions of Real Inner Product Gyrogroups |
title_sort |
Orthogonal Gyrodecompositions of Real Inner Product Gyrogroups |
author |
Ferreira, Milton |
author_facet |
Ferreira, Milton Suksumran, Teerapong |
author_role |
author |
author2 |
Suksumran, Teerapong |
author2_role |
author |
dc.contributor.none.fl_str_mv |
IC-Online |
dc.contributor.author.fl_str_mv |
Ferreira, Milton Suksumran, Teerapong |
dc.subject.por.fl_str_mv |
Real inner product gyrogroup Orthogonal decomposition Gyroprojection Coset space Partitions Quotient space Gyrolines Cogyrolines fiber bundles |
topic |
Real inner product gyrogroup Orthogonal decomposition Gyroprojection Coset space Partitions Quotient space Gyrolines Cogyrolines fiber bundles |
description |
In this article, we prove an orthogonal decomposition theorem for real inner product gyrogroups, which unify some well-known gyrogroups in the literature: Einstein, M\"{o}bius, Proper Velocity, and Chen's gyrogroups. This leads to the study of left (right) coset partition of a real inner product gyrogroup induced from a subgyrogroup that is a finite dimensional subspace. As~a result, we obtain gyroprojectors onto the subgyrogroup and its orthogonal complement. We~construct also quotient spaces and prove an associated isomorphism theorem. The left (right) cosets are characterized using gyrolines (cogyrolines) together with automorphisms of the subgyrogroup. With~the algebraic structure of the decompositions, we study fiber bundles and sections inherited by the gyroprojectors. Finally, the general theory is exemplified for the aforementioned gyrogroups. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-07-15T13:11:52Z 2020-06-03 2020-06-03T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.8/5008 |
url |
http://hdl.handle.net/10400.8/5008 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Ferreira, M.; Suksumran, T. Orthogonal Gyrodecompositions of Real Inner Product Gyrogroups. Symmetry 2020, 12(6), 941. 10.3390/sym12060941 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
MDPI |
publisher.none.fl_str_mv |
MDPI |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799136980702855168 |