Orthogonal gyrodecompositions of real inner product gyrogroups

Detalhes bibliográficos
Autor(a) principal: Ferreira, Milton
Data de Publicação: 2020
Outros Autores: Suksumran, Teerapong
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/28884
Resumo: In this article, we prove an orthogonal decomposition theorem for real inner product gyrogroups, which unify some well-known gyrogroups in the literature: Einstein, Möbius, Proper Velocity, and Chen’s gyrogroups. This leads to the study of left (right) coset partition of a real inner product gyrogroup induced from a subgyrogroup that is a finite dimensional subspace. As a result, we obtain gyroprojectors onto the subgyrogroup and its orthogonal complement. We construct also quotient spaces and prove an associated isomorphism theorem. The left (right) cosets are characterized using gyrolines (cogyrolines) together with automorphisms of the subgyrogroup. With the algebraic structure of the decompositions, we study fiber bundles and sections inherited by the gyroprojectors. Finally, the general theory is exemplified for the aforementioned gyrogroups.
id RCAP_981c3ca7da165abbc77bb22870c83028
oai_identifier_str oai:ria.ua.pt:10773/28884
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Orthogonal gyrodecompositions of real inner product gyrogroupsReal inner product gyrogroupOrthogonal decompositionGyroprojectionCoset spacePartitionsQuotient spaceGyrolinesCogyrolinesFiber bundlesIn this article, we prove an orthogonal decomposition theorem for real inner product gyrogroups, which unify some well-known gyrogroups in the literature: Einstein, Möbius, Proper Velocity, and Chen’s gyrogroups. This leads to the study of left (right) coset partition of a real inner product gyrogroup induced from a subgyrogroup that is a finite dimensional subspace. As a result, we obtain gyroprojectors onto the subgyrogroup and its orthogonal complement. We construct also quotient spaces and prove an associated isomorphism theorem. The left (right) cosets are characterized using gyrolines (cogyrolines) together with automorphisms of the subgyrogroup. With the algebraic structure of the decompositions, we study fiber bundles and sections inherited by the gyroprojectors. Finally, the general theory is exemplified for the aforementioned gyrogroups.MDPI2020-07-20T12:04:39Z2020-06-01T00:00:00Z2020-06info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/28884eng2073-899410.3390/sym12060941Ferreira, MiltonSuksumran, Teeraponginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:55:50Zoai:ria.ua.pt:10773/28884Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:01:18.746184Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Orthogonal gyrodecompositions of real inner product gyrogroups
title Orthogonal gyrodecompositions of real inner product gyrogroups
spellingShingle Orthogonal gyrodecompositions of real inner product gyrogroups
Ferreira, Milton
Real inner product gyrogroup
Orthogonal decomposition
Gyroprojection
Coset space
Partitions
Quotient space
Gyrolines
Cogyrolines
Fiber bundles
title_short Orthogonal gyrodecompositions of real inner product gyrogroups
title_full Orthogonal gyrodecompositions of real inner product gyrogroups
title_fullStr Orthogonal gyrodecompositions of real inner product gyrogroups
title_full_unstemmed Orthogonal gyrodecompositions of real inner product gyrogroups
title_sort Orthogonal gyrodecompositions of real inner product gyrogroups
author Ferreira, Milton
author_facet Ferreira, Milton
Suksumran, Teerapong
author_role author
author2 Suksumran, Teerapong
author2_role author
dc.contributor.author.fl_str_mv Ferreira, Milton
Suksumran, Teerapong
dc.subject.por.fl_str_mv Real inner product gyrogroup
Orthogonal decomposition
Gyroprojection
Coset space
Partitions
Quotient space
Gyrolines
Cogyrolines
Fiber bundles
topic Real inner product gyrogroup
Orthogonal decomposition
Gyroprojection
Coset space
Partitions
Quotient space
Gyrolines
Cogyrolines
Fiber bundles
description In this article, we prove an orthogonal decomposition theorem for real inner product gyrogroups, which unify some well-known gyrogroups in the literature: Einstein, Möbius, Proper Velocity, and Chen’s gyrogroups. This leads to the study of left (right) coset partition of a real inner product gyrogroup induced from a subgyrogroup that is a finite dimensional subspace. As a result, we obtain gyroprojectors onto the subgyrogroup and its orthogonal complement. We construct also quotient spaces and prove an associated isomorphism theorem. The left (right) cosets are characterized using gyrolines (cogyrolines) together with automorphisms of the subgyrogroup. With the algebraic structure of the decompositions, we study fiber bundles and sections inherited by the gyroprojectors. Finally, the general theory is exemplified for the aforementioned gyrogroups.
publishDate 2020
dc.date.none.fl_str_mv 2020-07-20T12:04:39Z
2020-06-01T00:00:00Z
2020-06
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/28884
url http://hdl.handle.net/10773/28884
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2073-8994
10.3390/sym12060941
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv MDPI
publisher.none.fl_str_mv MDPI
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137668794155008