Orthogonal gyrodecompositions of real inner product gyrogroups
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/28884 |
Resumo: | In this article, we prove an orthogonal decomposition theorem for real inner product gyrogroups, which unify some well-known gyrogroups in the literature: Einstein, Möbius, Proper Velocity, and Chen’s gyrogroups. This leads to the study of left (right) coset partition of a real inner product gyrogroup induced from a subgyrogroup that is a finite dimensional subspace. As a result, we obtain gyroprojectors onto the subgyrogroup and its orthogonal complement. We construct also quotient spaces and prove an associated isomorphism theorem. The left (right) cosets are characterized using gyrolines (cogyrolines) together with automorphisms of the subgyrogroup. With the algebraic structure of the decompositions, we study fiber bundles and sections inherited by the gyroprojectors. Finally, the general theory is exemplified for the aforementioned gyrogroups. |
id |
RCAP_981c3ca7da165abbc77bb22870c83028 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/28884 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Orthogonal gyrodecompositions of real inner product gyrogroupsReal inner product gyrogroupOrthogonal decompositionGyroprojectionCoset spacePartitionsQuotient spaceGyrolinesCogyrolinesFiber bundlesIn this article, we prove an orthogonal decomposition theorem for real inner product gyrogroups, which unify some well-known gyrogroups in the literature: Einstein, Möbius, Proper Velocity, and Chen’s gyrogroups. This leads to the study of left (right) coset partition of a real inner product gyrogroup induced from a subgyrogroup that is a finite dimensional subspace. As a result, we obtain gyroprojectors onto the subgyrogroup and its orthogonal complement. We construct also quotient spaces and prove an associated isomorphism theorem. The left (right) cosets are characterized using gyrolines (cogyrolines) together with automorphisms of the subgyrogroup. With the algebraic structure of the decompositions, we study fiber bundles and sections inherited by the gyroprojectors. Finally, the general theory is exemplified for the aforementioned gyrogroups.MDPI2020-07-20T12:04:39Z2020-06-01T00:00:00Z2020-06info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/28884eng2073-899410.3390/sym12060941Ferreira, MiltonSuksumran, Teeraponginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:55:50Zoai:ria.ua.pt:10773/28884Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:01:18.746184Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Orthogonal gyrodecompositions of real inner product gyrogroups |
title |
Orthogonal gyrodecompositions of real inner product gyrogroups |
spellingShingle |
Orthogonal gyrodecompositions of real inner product gyrogroups Ferreira, Milton Real inner product gyrogroup Orthogonal decomposition Gyroprojection Coset space Partitions Quotient space Gyrolines Cogyrolines Fiber bundles |
title_short |
Orthogonal gyrodecompositions of real inner product gyrogroups |
title_full |
Orthogonal gyrodecompositions of real inner product gyrogroups |
title_fullStr |
Orthogonal gyrodecompositions of real inner product gyrogroups |
title_full_unstemmed |
Orthogonal gyrodecompositions of real inner product gyrogroups |
title_sort |
Orthogonal gyrodecompositions of real inner product gyrogroups |
author |
Ferreira, Milton |
author_facet |
Ferreira, Milton Suksumran, Teerapong |
author_role |
author |
author2 |
Suksumran, Teerapong |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Ferreira, Milton Suksumran, Teerapong |
dc.subject.por.fl_str_mv |
Real inner product gyrogroup Orthogonal decomposition Gyroprojection Coset space Partitions Quotient space Gyrolines Cogyrolines Fiber bundles |
topic |
Real inner product gyrogroup Orthogonal decomposition Gyroprojection Coset space Partitions Quotient space Gyrolines Cogyrolines Fiber bundles |
description |
In this article, we prove an orthogonal decomposition theorem for real inner product gyrogroups, which unify some well-known gyrogroups in the literature: Einstein, Möbius, Proper Velocity, and Chen’s gyrogroups. This leads to the study of left (right) coset partition of a real inner product gyrogroup induced from a subgyrogroup that is a finite dimensional subspace. As a result, we obtain gyroprojectors onto the subgyrogroup and its orthogonal complement. We construct also quotient spaces and prove an associated isomorphism theorem. The left (right) cosets are characterized using gyrolines (cogyrolines) together with automorphisms of the subgyrogroup. With the algebraic structure of the decompositions, we study fiber bundles and sections inherited by the gyroprojectors. Finally, the general theory is exemplified for the aforementioned gyrogroups. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-07-20T12:04:39Z 2020-06-01T00:00:00Z 2020-06 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/28884 |
url |
http://hdl.handle.net/10773/28884 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2073-8994 10.3390/sym12060941 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
MDPI |
publisher.none.fl_str_mv |
MDPI |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137668794155008 |