Business Intelligence for smart cities: Patterns and impacts of illegal parking
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/127914 |
Resumo: | Project Work presented as the partial requirement for obtaining a Master's degree in Information Management, specialization in Knowledge Management and Business Intelligence |
id |
RCAP_10642c574a0f209046aa23a150a9f534 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/127914 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Business Intelligence for smart cities: Patterns and impacts of illegal parkingSmart CityLisbonParkingAbusive ParkingIllegal ParkingPredictive ModelDashboardProject Work presented as the partial requirement for obtaining a Master's degree in Information Management, specialization in Knowledge Management and Business IntelligenceThe smart city concept became more than just a buzzword. Policy makers, researchers and citizens understand the necessity to improve the quality of living for its citizens using information and communication technologies (ICT). Parking has becoming an expensive resource with illegal parking raising a red flag in almost any major urban area in the world. In this context, the present work project consists on the identification of patterns and prediction of illegal and abusive on street parking in the city of Lisbon, by spatial unit and time of day. The literature review will begin with a description of Smart Cities concepts, the phenomena of urbanization and the emergence of the Illegal and abusive parking concepts within Smart Cities context. Later, it will focus on predicting illegal parking so that, evaluation metrics can be taken to be applied to the data. With these metrics, a predictive model will be developed based on the in-depth literature review of suitable studies as well as data regarding the complaints of illegal and abusive parking registered in “Na Minha Rua Lx” platform and the towed cars registered by Lisbon Municipal Police. The results will be presented on an interactive and user friendly dashboard built using advanced data analytics features of Power BI.Neto, Miguel de Castro Simões FerreiraRUNSousa, Mara Filipa Mendes2021-11-18T17:33:03Z2021-11-042021-11-04T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/127914TID:202839290enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:07:42Zoai:run.unl.pt:10362/127914Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:46:14.093973Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Business Intelligence for smart cities: Patterns and impacts of illegal parking |
title |
Business Intelligence for smart cities: Patterns and impacts of illegal parking |
spellingShingle |
Business Intelligence for smart cities: Patterns and impacts of illegal parking Sousa, Mara Filipa Mendes Smart City Lisbon Parking Abusive Parking Illegal Parking Predictive Model Dashboard |
title_short |
Business Intelligence for smart cities: Patterns and impacts of illegal parking |
title_full |
Business Intelligence for smart cities: Patterns and impacts of illegal parking |
title_fullStr |
Business Intelligence for smart cities: Patterns and impacts of illegal parking |
title_full_unstemmed |
Business Intelligence for smart cities: Patterns and impacts of illegal parking |
title_sort |
Business Intelligence for smart cities: Patterns and impacts of illegal parking |
author |
Sousa, Mara Filipa Mendes |
author_facet |
Sousa, Mara Filipa Mendes |
author_role |
author |
dc.contributor.none.fl_str_mv |
Neto, Miguel de Castro Simões Ferreira RUN |
dc.contributor.author.fl_str_mv |
Sousa, Mara Filipa Mendes |
dc.subject.por.fl_str_mv |
Smart City Lisbon Parking Abusive Parking Illegal Parking Predictive Model Dashboard |
topic |
Smart City Lisbon Parking Abusive Parking Illegal Parking Predictive Model Dashboard |
description |
Project Work presented as the partial requirement for obtaining a Master's degree in Information Management, specialization in Knowledge Management and Business Intelligence |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-11-18T17:33:03Z 2021-11-04 2021-11-04T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/127914 TID:202839290 |
url |
http://hdl.handle.net/10362/127914 |
identifier_str_mv |
TID:202839290 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138066287296512 |