Homotheties and topology of tangent sphere bundles
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10174/20007 https://doi.org/10.1007/s00022-014-0210-x |
Resumo: | We prove a Theorem on homotheties between two given tangent sphere bundles SrM of a Riemannian manifold (M,g) of dim ≥ 3, assuming different variable radius functions r and weighted Sasaki metrics induced by the conformal class of g. New examples are shown of manifolds with constant positive or with constant negative scalar curvature which are not Einstein. Recalling results on the associated almost complex structure I^G and symplectic structure ω^G on the manifold TM , generalizing the well-known structure of Sasaki by admitting weights and connections with torsion, we compute the Chern and the Stiefel-Whitney characteristic classes of the manifolds TM and SrM. |
id |
RCAP_118bb10cf2cfcaac50906960ab5e73a6 |
---|---|
oai_identifier_str |
oai:dspace.uevora.pt:10174/20007 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Homotheties and topology of tangent sphere bundlestangent sphere bundlehomothetycharacteristic classWe prove a Theorem on homotheties between two given tangent sphere bundles SrM of a Riemannian manifold (M,g) of dim ≥ 3, assuming different variable radius functions r and weighted Sasaki metrics induced by the conformal class of g. New examples are shown of manifolds with constant positive or with constant negative scalar curvature which are not Einstein. Recalling results on the associated almost complex structure I^G and symplectic structure ω^G on the manifold TM , generalizing the well-known structure of Sasaki by admitting weights and connections with torsion, we compute the Chern and the Stiefel-Whitney characteristic classes of the manifolds TM and SrM.Springer2017-01-24T15:08:38Z2017-01-242014-01-29T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10174/20007http://hdl.handle.net/10174/20007https://doi.org/10.1007/s00022-014-0210-xporAlbuquerque, R. J. Geom. (2014) 105: 327--342.http://arxiv.org/abs/1012.4135rpa@uevora.pt337Albuquerque, Ruiinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-03T19:09:28Zoai:dspace.uevora.pt:10174/20007Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:11:30.436133Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Homotheties and topology of tangent sphere bundles |
title |
Homotheties and topology of tangent sphere bundles |
spellingShingle |
Homotheties and topology of tangent sphere bundles Albuquerque, Rui tangent sphere bundle homothety characteristic class |
title_short |
Homotheties and topology of tangent sphere bundles |
title_full |
Homotheties and topology of tangent sphere bundles |
title_fullStr |
Homotheties and topology of tangent sphere bundles |
title_full_unstemmed |
Homotheties and topology of tangent sphere bundles |
title_sort |
Homotheties and topology of tangent sphere bundles |
author |
Albuquerque, Rui |
author_facet |
Albuquerque, Rui |
author_role |
author |
dc.contributor.author.fl_str_mv |
Albuquerque, Rui |
dc.subject.por.fl_str_mv |
tangent sphere bundle homothety characteristic class |
topic |
tangent sphere bundle homothety characteristic class |
description |
We prove a Theorem on homotheties between two given tangent sphere bundles SrM of a Riemannian manifold (M,g) of dim ≥ 3, assuming different variable radius functions r and weighted Sasaki metrics induced by the conformal class of g. New examples are shown of manifolds with constant positive or with constant negative scalar curvature which are not Einstein. Recalling results on the associated almost complex structure I^G and symplectic structure ω^G on the manifold TM , generalizing the well-known structure of Sasaki by admitting weights and connections with torsion, we compute the Chern and the Stiefel-Whitney characteristic classes of the manifolds TM and SrM. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-01-29T00:00:00Z 2017-01-24T15:08:38Z 2017-01-24 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10174/20007 http://hdl.handle.net/10174/20007 https://doi.org/10.1007/s00022-014-0210-x |
url |
http://hdl.handle.net/10174/20007 https://doi.org/10.1007/s00022-014-0210-x |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
Albuquerque, R. J. Geom. (2014) 105: 327--342. http://arxiv.org/abs/1012.4135 rpa@uevora.pt 337 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1817550382048477184 |