Homotheties and topology of tangent sphere bundles

Detalhes bibliográficos
Autor(a) principal: Albuquerque, Rui
Data de Publicação: 2014
Tipo de documento: Artigo
Idioma: por
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10174/20007
https://doi.org/10.1007/s00022-014-0210-x
Resumo: We prove a Theorem on homotheties between two given tangent sphere bundles SrM of a Riemannian manifold (M,g) of dim ≥ 3, assuming different variable radius functions r and weighted Sasaki metrics induced by the conformal class of g. New examples are shown of manifolds with constant positive or with constant negative scalar curvature which are not Einstein. Recalling results on the associated almost complex structure I^G and symplectic structure ω^G on the manifold TM , generalizing the well-known structure of Sasaki by admitting weights and connections with torsion, we compute the Chern and the Stiefel-Whitney characteristic classes of the manifolds TM and SrM.
id RCAP_118bb10cf2cfcaac50906960ab5e73a6
oai_identifier_str oai:dspace.uevora.pt:10174/20007
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Homotheties and topology of tangent sphere bundlestangent sphere bundlehomothetycharacteristic classWe prove a Theorem on homotheties between two given tangent sphere bundles SrM of a Riemannian manifold (M,g) of dim ≥ 3, assuming different variable radius functions r and weighted Sasaki metrics induced by the conformal class of g. New examples are shown of manifolds with constant positive or with constant negative scalar curvature which are not Einstein. Recalling results on the associated almost complex structure I^G and symplectic structure ω^G on the manifold TM , generalizing the well-known structure of Sasaki by admitting weights and connections with torsion, we compute the Chern and the Stiefel-Whitney characteristic classes of the manifolds TM and SrM.Springer2017-01-24T15:08:38Z2017-01-242014-01-29T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10174/20007http://hdl.handle.net/10174/20007https://doi.org/10.1007/s00022-014-0210-xporAlbuquerque, R. J. Geom. (2014) 105: 327--342.http://arxiv.org/abs/1012.4135rpa@uevora.pt337Albuquerque, Ruiinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-03T19:09:28Zoai:dspace.uevora.pt:10174/20007Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:11:30.436133Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Homotheties and topology of tangent sphere bundles
title Homotheties and topology of tangent sphere bundles
spellingShingle Homotheties and topology of tangent sphere bundles
Albuquerque, Rui
tangent sphere bundle
homothety
characteristic class
title_short Homotheties and topology of tangent sphere bundles
title_full Homotheties and topology of tangent sphere bundles
title_fullStr Homotheties and topology of tangent sphere bundles
title_full_unstemmed Homotheties and topology of tangent sphere bundles
title_sort Homotheties and topology of tangent sphere bundles
author Albuquerque, Rui
author_facet Albuquerque, Rui
author_role author
dc.contributor.author.fl_str_mv Albuquerque, Rui
dc.subject.por.fl_str_mv tangent sphere bundle
homothety
characteristic class
topic tangent sphere bundle
homothety
characteristic class
description We prove a Theorem on homotheties between two given tangent sphere bundles SrM of a Riemannian manifold (M,g) of dim ≥ 3, assuming different variable radius functions r and weighted Sasaki metrics induced by the conformal class of g. New examples are shown of manifolds with constant positive or with constant negative scalar curvature which are not Einstein. Recalling results on the associated almost complex structure I^G and symplectic structure ω^G on the manifold TM , generalizing the well-known structure of Sasaki by admitting weights and connections with torsion, we compute the Chern and the Stiefel-Whitney characteristic classes of the manifolds TM and SrM.
publishDate 2014
dc.date.none.fl_str_mv 2014-01-29T00:00:00Z
2017-01-24T15:08:38Z
2017-01-24
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10174/20007
http://hdl.handle.net/10174/20007
https://doi.org/10.1007/s00022-014-0210-x
url http://hdl.handle.net/10174/20007
https://doi.org/10.1007/s00022-014-0210-x
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv Albuquerque, R. J. Geom. (2014) 105: 327--342.
http://arxiv.org/abs/1012.4135
rpa@uevora.pt
337
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1817550382048477184