Natural SU(2)-structures on tangent sphere bundles
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10174/30972 https://doi.org/Albuquerque, R., Natural SU(2)-structures on tangent sphere bundles, Asian Journal of Mathematics, Vol 24, 3 (2020), pp. 457-482, https://dx.doi.org/10.4310/AJM.2020.v24.n3.a4 https://doi.org/10.4310/AJM.2020.v24.n3.a4 |
Resumo: | We define and study natural SU(2)-structures, in the sense of Conti–Salamon, on the total space S of the tangent sphere bundle of any given oriented Riemannian 3-manifold M. We recur to a fundamental exterior differential system of Riemannian geometry. Essentially, two types of structures arise: the contact-hypo and the non-contact and, for each, we study the conditions for being hypo, nearly-hypo or double-hypo. We discover new double-hypo structures on S^3×S^2, of which the well-known Sasaki–Einstein are a particular case. Hyperbolic geometry examples also appear. In the search of the associated metrics, we find a theorem, useful for explicitly determining the metric, which applies to all SU(2)-structures in general. Within our application to tangent sphere bundles, we discover a whole new class of metrics specific to 3d-geometry. The evolution equations of Conti–Salamon are considered, leading us to a new integrable SU(3)-structure on S×ℝ^+ associated to any flat M. |
id |
RCAP_572da16af99941a8b6e6f35580eeb953 |
---|---|
oai_identifier_str |
oai:dspace.uevora.pt:10174/30972 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Natural SU(2)-structures on tangent sphere bundlestangent bundleSU(n)-structurehypo structureevolution equationsWe define and study natural SU(2)-structures, in the sense of Conti–Salamon, on the total space S of the tangent sphere bundle of any given oriented Riemannian 3-manifold M. We recur to a fundamental exterior differential system of Riemannian geometry. Essentially, two types of structures arise: the contact-hypo and the non-contact and, for each, we study the conditions for being hypo, nearly-hypo or double-hypo. We discover new double-hypo structures on S^3×S^2, of which the well-known Sasaki–Einstein are a particular case. Hyperbolic geometry examples also appear. In the search of the associated metrics, we find a theorem, useful for explicitly determining the metric, which applies to all SU(2)-structures in general. Within our application to tangent sphere bundles, we discover a whole new class of metrics specific to 3d-geometry. The evolution equations of Conti–Salamon are considered, leading us to a new integrable SU(3)-structure on S×ℝ^+ associated to any flat M.International Press2022-01-31T15:41:58Z2022-01-312020-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10174/30972https://doi.org/Albuquerque, R., Natural SU(2)-structures on tangent sphere bundles, Asian Journal of Mathematics, Vol 24, 3 (2020), pp. 457-482, https://dx.doi.org/10.4310/AJM.2020.v24.n3.a4http://hdl.handle.net/10174/30972https://doi.org/10.4310/AJM.2020.v24.n3.a4porhttps://www.intlpress.com/site/pub/files/_fulltext/journals/ajm/2020/0024/0003/AJM-2020-0024-0003-a004.pdfrpa_da@sapo.pt337Albuquerque, Ruiinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-03T19:28:48Zoai:dspace.uevora.pt:10174/30972Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:20:02.132531Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Natural SU(2)-structures on tangent sphere bundles |
title |
Natural SU(2)-structures on tangent sphere bundles |
spellingShingle |
Natural SU(2)-structures on tangent sphere bundles Albuquerque, Rui tangent bundle SU(n)-structure hypo structure evolution equations |
title_short |
Natural SU(2)-structures on tangent sphere bundles |
title_full |
Natural SU(2)-structures on tangent sphere bundles |
title_fullStr |
Natural SU(2)-structures on tangent sphere bundles |
title_full_unstemmed |
Natural SU(2)-structures on tangent sphere bundles |
title_sort |
Natural SU(2)-structures on tangent sphere bundles |
author |
Albuquerque, Rui |
author_facet |
Albuquerque, Rui |
author_role |
author |
dc.contributor.author.fl_str_mv |
Albuquerque, Rui |
dc.subject.por.fl_str_mv |
tangent bundle SU(n)-structure hypo structure evolution equations |
topic |
tangent bundle SU(n)-structure hypo structure evolution equations |
description |
We define and study natural SU(2)-structures, in the sense of Conti–Salamon, on the total space S of the tangent sphere bundle of any given oriented Riemannian 3-manifold M. We recur to a fundamental exterior differential system of Riemannian geometry. Essentially, two types of structures arise: the contact-hypo and the non-contact and, for each, we study the conditions for being hypo, nearly-hypo or double-hypo. We discover new double-hypo structures on S^3×S^2, of which the well-known Sasaki–Einstein are a particular case. Hyperbolic geometry examples also appear. In the search of the associated metrics, we find a theorem, useful for explicitly determining the metric, which applies to all SU(2)-structures in general. Within our application to tangent sphere bundles, we discover a whole new class of metrics specific to 3d-geometry. The evolution equations of Conti–Salamon are considered, leading us to a new integrable SU(3)-structure on S×ℝ^+ associated to any flat M. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-01-01T00:00:00Z 2022-01-31T15:41:58Z 2022-01-31 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10174/30972 https://doi.org/Albuquerque, R., Natural SU(2)-structures on tangent sphere bundles, Asian Journal of Mathematics, Vol 24, 3 (2020), pp. 457-482, https://dx.doi.org/10.4310/AJM.2020.v24.n3.a4 http://hdl.handle.net/10174/30972 https://doi.org/10.4310/AJM.2020.v24.n3.a4 |
url |
http://hdl.handle.net/10174/30972 https://doi.org/Albuquerque, R., Natural SU(2)-structures on tangent sphere bundles, Asian Journal of Mathematics, Vol 24, 3 (2020), pp. 457-482, https://dx.doi.org/10.4310/AJM.2020.v24.n3.a4 https://doi.org/10.4310/AJM.2020.v24.n3.a4 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://www.intlpress.com/site/pub/files/_fulltext/journals/ajm/2020/0024/0003/AJM-2020-0024-0003-a004.pdf rpa_da@sapo.pt 337 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
International Press |
publisher.none.fl_str_mv |
International Press |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799136681364815872 |