Reinforcement Learning for Scheduling Wireless Powered Sensor Communications
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.22/13851 |
Resumo: | In a wireless powered sensor network, a base station transfers power to sensors by using wireless power transfer (WPT). Inadequately scheduling WPT and data transmission causes fast battery drainage and data queue overflow of some sensors who could have potentially gained high data reception. In this paper, scheduling WPT and data transmission is formulated as a Markov decision process (MDP) by jointly considering sensors’ energy consumption and data queue. In practical scenarios, the prior knowledge about battery level and data queue length in MDP is not available at the base station. We study reinforcement learning at the sensors to find a transmission scheduling strategy, minimizing data packet loss. An optimal scheduling strategy with full-state information is also investigated, assuming that the complete battery level and data queue information are well known by the base station. This presents the lower bound of the data packet loss in wireless powered sensor networks. Numerical results demonstrate that the proposed reinforcement learning scheduling algorithm significantly reduces network packet loss rate by 60%, and increases network goodput by 67%, compared to existing non-MDP greedy approaches. Moreover, comparing the optimal solutions, the performance loss due to the lack of sensors’ full-state information is less than 4.6%. |
id |
RCAP_125d4bf1f4dea98cd56bb418f24b7dee |
---|---|
oai_identifier_str |
oai:recipp.ipp.pt:10400.22/13851 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Reinforcement Learning for Scheduling Wireless Powered Sensor CommunicationsWireless sensor networkWireless power transferMarkov decision processReinforcement learningOptimizationIn a wireless powered sensor network, a base station transfers power to sensors by using wireless power transfer (WPT). Inadequately scheduling WPT and data transmission causes fast battery drainage and data queue overflow of some sensors who could have potentially gained high data reception. In this paper, scheduling WPT and data transmission is formulated as a Markov decision process (MDP) by jointly considering sensors’ energy consumption and data queue. In practical scenarios, the prior knowledge about battery level and data queue length in MDP is not available at the base station. We study reinforcement learning at the sensors to find a transmission scheduling strategy, minimizing data packet loss. An optimal scheduling strategy with full-state information is also investigated, assuming that the complete battery level and data queue information are well known by the base station. This presents the lower bound of the data packet loss in wireless powered sensor networks. Numerical results demonstrate that the proposed reinforcement learning scheduling algorithm significantly reduces network packet loss rate by 60%, and increases network goodput by 67%, compared to existing non-MDP greedy approaches. Moreover, comparing the optimal solutions, the performance loss due to the lack of sensors’ full-state information is less than 4.6%.IEEERepositório Científico do Instituto Politécnico do PortoLi, KaiNi, WeiAbolhasan, MehranTovar, Eduardo20192119-01-01T00:00:00Z2019-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.22/13851eng2473-240010.1109/TGCN.2018.2879023metadata only accessinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-13T12:56:11Zoai:recipp.ipp.pt:10400.22/13851Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:33:44.511228Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Reinforcement Learning for Scheduling Wireless Powered Sensor Communications |
title |
Reinforcement Learning for Scheduling Wireless Powered Sensor Communications |
spellingShingle |
Reinforcement Learning for Scheduling Wireless Powered Sensor Communications Li, Kai Wireless sensor network Wireless power transfer Markov decision process Reinforcement learning Optimization |
title_short |
Reinforcement Learning for Scheduling Wireless Powered Sensor Communications |
title_full |
Reinforcement Learning for Scheduling Wireless Powered Sensor Communications |
title_fullStr |
Reinforcement Learning for Scheduling Wireless Powered Sensor Communications |
title_full_unstemmed |
Reinforcement Learning for Scheduling Wireless Powered Sensor Communications |
title_sort |
Reinforcement Learning for Scheduling Wireless Powered Sensor Communications |
author |
Li, Kai |
author_facet |
Li, Kai Ni, Wei Abolhasan, Mehran Tovar, Eduardo |
author_role |
author |
author2 |
Ni, Wei Abolhasan, Mehran Tovar, Eduardo |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Repositório Científico do Instituto Politécnico do Porto |
dc.contributor.author.fl_str_mv |
Li, Kai Ni, Wei Abolhasan, Mehran Tovar, Eduardo |
dc.subject.por.fl_str_mv |
Wireless sensor network Wireless power transfer Markov decision process Reinforcement learning Optimization |
topic |
Wireless sensor network Wireless power transfer Markov decision process Reinforcement learning Optimization |
description |
In a wireless powered sensor network, a base station transfers power to sensors by using wireless power transfer (WPT). Inadequately scheduling WPT and data transmission causes fast battery drainage and data queue overflow of some sensors who could have potentially gained high data reception. In this paper, scheduling WPT and data transmission is formulated as a Markov decision process (MDP) by jointly considering sensors’ energy consumption and data queue. In practical scenarios, the prior knowledge about battery level and data queue length in MDP is not available at the base station. We study reinforcement learning at the sensors to find a transmission scheduling strategy, minimizing data packet loss. An optimal scheduling strategy with full-state information is also investigated, assuming that the complete battery level and data queue information are well known by the base station. This presents the lower bound of the data packet loss in wireless powered sensor networks. Numerical results demonstrate that the proposed reinforcement learning scheduling algorithm significantly reduces network packet loss rate by 60%, and increases network goodput by 67%, compared to existing non-MDP greedy approaches. Moreover, comparing the optimal solutions, the performance loss due to the lack of sensors’ full-state information is less than 4.6%. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019 2019-01-01T00:00:00Z 2119-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.22/13851 |
url |
http://hdl.handle.net/10400.22/13851 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2473-2400 10.1109/TGCN.2018.2879023 |
dc.rights.driver.fl_str_mv |
metadata only access info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
metadata only access |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
IEEE |
publisher.none.fl_str_mv |
IEEE |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799131429510053888 |