Shopping intention prediction using decision trees
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.19/4827 |
Resumo: | Introduction: The price is considered to be neglected marketing mix element due to the complexity of price management and sensitivity of customers on price changes. It pulls the fastest customer reactions to that change. Accordingly, the process of making shopping decisions can be very challenging for customer. Objective: The aim of this paper is to create a model that is able to predict shopping intention and classify respondents into one of the two categories, depending on whether they intend to shop or not. Methods: Data sample consists of 305 respondents, who are persons older than 18 years involved in buying groceries for their household. The research was conducted in February 2017. In order to create a model, the decision trees method was used with its several classification algorithms. Results: All models, except the one that used RandomTree algorithm, achieved relatively high classification rate (over the 80%). The highest classification accuracy of 84.75% gave J48 and RandomForest algorithms. Since there is no statistically significant difference between those two algorithms, authors decided to choose J48 algorithm and build a decision tree. Conclusions: The value for money and price level in the store were the most significant variables for classification of shopping intention. Future study plans to compare this model with some other data mining techniques, such as neural networks or support vector machines since these techniques achieved very good accuracy in some previous research in this field. |
id |
RCAP_12dfb9741de5bd30bc43f14739f6be43 |
---|---|
oai_identifier_str |
oai:repositorio.ipv.pt:10400.19/4827 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Shopping intention prediction using decision treesShopping intentionPrice imageRetailer’s imageClassification algorithmsMachine learningIntroduction: The price is considered to be neglected marketing mix element due to the complexity of price management and sensitivity of customers on price changes. It pulls the fastest customer reactions to that change. Accordingly, the process of making shopping decisions can be very challenging for customer. Objective: The aim of this paper is to create a model that is able to predict shopping intention and classify respondents into one of the two categories, depending on whether they intend to shop or not. Methods: Data sample consists of 305 respondents, who are persons older than 18 years involved in buying groceries for their household. The research was conducted in February 2017. In order to create a model, the decision trees method was used with its several classification algorithms. Results: All models, except the one that used RandomTree algorithm, achieved relatively high classification rate (over the 80%). The highest classification accuracy of 84.75% gave J48 and RandomForest algorithms. Since there is no statistically significant difference between those two algorithms, authors decided to choose J48 algorithm and build a decision tree. Conclusions: The value for money and price level in the store were the most significant variables for classification of shopping intention. Future study plans to compare this model with some other data mining techniques, such as neural networks or support vector machines since these techniques achieved very good accuracy in some previous research in this field.Repositório Científico do Instituto Politécnico de ViseuŠebalj, DarioFranjković, JelenaHodak, Kristina2018-02-16T15:08:43Z20172017-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.19/4827eng10.29352/mill0204.01.00155info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-01-16T15:27:39Zoai:repositorio.ipv.pt:10400.19/4827Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T16:43:21.273137Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Shopping intention prediction using decision trees |
title |
Shopping intention prediction using decision trees |
spellingShingle |
Shopping intention prediction using decision trees Šebalj, Dario Shopping intention Price image Retailer’s image Classification algorithms Machine learning |
title_short |
Shopping intention prediction using decision trees |
title_full |
Shopping intention prediction using decision trees |
title_fullStr |
Shopping intention prediction using decision trees |
title_full_unstemmed |
Shopping intention prediction using decision trees |
title_sort |
Shopping intention prediction using decision trees |
author |
Šebalj, Dario |
author_facet |
Šebalj, Dario Franjković, Jelena Hodak, Kristina |
author_role |
author |
author2 |
Franjković, Jelena Hodak, Kristina |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Repositório Científico do Instituto Politécnico de Viseu |
dc.contributor.author.fl_str_mv |
Šebalj, Dario Franjković, Jelena Hodak, Kristina |
dc.subject.por.fl_str_mv |
Shopping intention Price image Retailer’s image Classification algorithms Machine learning |
topic |
Shopping intention Price image Retailer’s image Classification algorithms Machine learning |
description |
Introduction: The price is considered to be neglected marketing mix element due to the complexity of price management and sensitivity of customers on price changes. It pulls the fastest customer reactions to that change. Accordingly, the process of making shopping decisions can be very challenging for customer. Objective: The aim of this paper is to create a model that is able to predict shopping intention and classify respondents into one of the two categories, depending on whether they intend to shop or not. Methods: Data sample consists of 305 respondents, who are persons older than 18 years involved in buying groceries for their household. The research was conducted in February 2017. In order to create a model, the decision trees method was used with its several classification algorithms. Results: All models, except the one that used RandomTree algorithm, achieved relatively high classification rate (over the 80%). The highest classification accuracy of 84.75% gave J48 and RandomForest algorithms. Since there is no statistically significant difference between those two algorithms, authors decided to choose J48 algorithm and build a decision tree. Conclusions: The value for money and price level in the store were the most significant variables for classification of shopping intention. Future study plans to compare this model with some other data mining techniques, such as neural networks or support vector machines since these techniques achieved very good accuracy in some previous research in this field. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017 2017-01-01T00:00:00Z 2018-02-16T15:08:43Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.19/4827 |
url |
http://hdl.handle.net/10400.19/4827 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.29352/mill0204.01.00155 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799130902956081152 |