Characterization of the Ashbya gossypii secreted N-glycome and genomic insights into its N-glycosylation pathway
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/1822/27523 |
Resumo: | The riboflavin producer Ashbya gossypii is a filamentous hemiascomycete, closely related to the yeast Saccharomyces cerevisiae, that has been used as a model organism to study fungal developmental biology. It has also been explored as a host for the expression of recombinant proteins. However, although N-glycosylation plays important roles in protein secretion, morphogenesis, and the development of multicellular organisms, the N-glycan structures synthesised by A. gossypii had not been elucidated. In this study, we report the first characterization of A. gossypii N-glycans and provide valuable insights into their biosynthetic pathway. By combined matrix-assisted laser desorption-ionization time-of-flight (MALDI-TOF) mass spectrometry profiling and nuclear magnetic resonance (NMR) spectroscopy we determined that the A. gossypii secreted N-glycome is characterized by high-mannose type structures in the range Man4–18GlcNAc2, mostly containing neutral core-type N-glycans with 8–10 mannoses. Cultivation in defined minimal media induced the production of acidic mannosylphosphorylated N-glycans, generally more elongated than the neutral N-glycans. Truncated neutral N-glycan structures similar to those found in other filamentous fungi (Man4–7GlcNAc2) were detected, suggesting the possible existence of trimming activity in A. gossypii. Homologs for all of the S. cerevisiae genes known to be involved in the endoplasmatic reticulum and Golgi N-glycan processing were found in the A. gossypii genome. However, processing of N-glycans by A. gossypii differs considerably from that by S. cerevisiae, allowing much shorter N-glycans. Genes for two putative N-glycan processing enzymes were identified, that did not have homologs in S. cerevisiae. |
id |
RCAP_12e3d02c6d0d1a642ecd2fac91563dbf |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/27523 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Characterization of the Ashbya gossypii secreted N-glycome and genomic insights into its N-glycosylation pathwayAshbya gossypiiN-Glycan structureN-GlycosylationSecreted glycoproteinsScience & TechnologyThe riboflavin producer Ashbya gossypii is a filamentous hemiascomycete, closely related to the yeast Saccharomyces cerevisiae, that has been used as a model organism to study fungal developmental biology. It has also been explored as a host for the expression of recombinant proteins. However, although N-glycosylation plays important roles in protein secretion, morphogenesis, and the development of multicellular organisms, the N-glycan structures synthesised by A. gossypii had not been elucidated. In this study, we report the first characterization of A. gossypii N-glycans and provide valuable insights into their biosynthetic pathway. By combined matrix-assisted laser desorption-ionization time-of-flight (MALDI-TOF) mass spectrometry profiling and nuclear magnetic resonance (NMR) spectroscopy we determined that the A. gossypii secreted N-glycome is characterized by high-mannose type structures in the range Man4–18GlcNAc2, mostly containing neutral core-type N-glycans with 8–10 mannoses. Cultivation in defined minimal media induced the production of acidic mannosylphosphorylated N-glycans, generally more elongated than the neutral N-glycans. Truncated neutral N-glycan structures similar to those found in other filamentous fungi (Man4–7GlcNAc2) were detected, suggesting the possible existence of trimming activity in A. gossypii. Homologs for all of the S. cerevisiae genes known to be involved in the endoplasmatic reticulum and Golgi N-glycan processing were found in the A. gossypii genome. However, processing of N-glycans by A. gossypii differs considerably from that by S. cerevisiae, allowing much shorter N-glycans. Genes for two putative N-glycan processing enzymes were identified, that did not have homologs in S. cerevisiae.We thank Fundacao para a Ciencia e a Tecnologia (FCT), Portugal, for financial support through the project AshByofactory (PTDC/EBB-EBI/101985/2008-FCOMP-01-0124-FEDER-009701) and MIT-Portugal Program (Ph.D. grant SFRH/BD/39112/2007 to Tatiana Q. Aguiar). We also thank Dr. Olli Aitio (University of Helsinki) for helpful assistance in the interpretation of the NMR data.ElsevierPergamon Press Ltd.Universidade do MinhoAguiar, Tatiana QuintaMaaheimo, HannuHeiskanen, AnnamariWiebe, Marilyn G.Penttilä, MerjaDomingues, Lucília20132013-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/27523eng0008-621510.1016/j.carres.2013.08.01524056010info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:24:28Zoai:repositorium.sdum.uminho.pt:1822/27523Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:18:29.306881Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Characterization of the Ashbya gossypii secreted N-glycome and genomic insights into its N-glycosylation pathway |
title |
Characterization of the Ashbya gossypii secreted N-glycome and genomic insights into its N-glycosylation pathway |
spellingShingle |
Characterization of the Ashbya gossypii secreted N-glycome and genomic insights into its N-glycosylation pathway Aguiar, Tatiana Quinta Ashbya gossypii N-Glycan structure N-Glycosylation Secreted glycoproteins Science & Technology |
title_short |
Characterization of the Ashbya gossypii secreted N-glycome and genomic insights into its N-glycosylation pathway |
title_full |
Characterization of the Ashbya gossypii secreted N-glycome and genomic insights into its N-glycosylation pathway |
title_fullStr |
Characterization of the Ashbya gossypii secreted N-glycome and genomic insights into its N-glycosylation pathway |
title_full_unstemmed |
Characterization of the Ashbya gossypii secreted N-glycome and genomic insights into its N-glycosylation pathway |
title_sort |
Characterization of the Ashbya gossypii secreted N-glycome and genomic insights into its N-glycosylation pathway |
author |
Aguiar, Tatiana Quinta |
author_facet |
Aguiar, Tatiana Quinta Maaheimo, Hannu Heiskanen, Annamari Wiebe, Marilyn G. Penttilä, Merja Domingues, Lucília |
author_role |
author |
author2 |
Maaheimo, Hannu Heiskanen, Annamari Wiebe, Marilyn G. Penttilä, Merja Domingues, Lucília |
author2_role |
author author author author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Aguiar, Tatiana Quinta Maaheimo, Hannu Heiskanen, Annamari Wiebe, Marilyn G. Penttilä, Merja Domingues, Lucília |
dc.subject.por.fl_str_mv |
Ashbya gossypii N-Glycan structure N-Glycosylation Secreted glycoproteins Science & Technology |
topic |
Ashbya gossypii N-Glycan structure N-Glycosylation Secreted glycoproteins Science & Technology |
description |
The riboflavin producer Ashbya gossypii is a filamentous hemiascomycete, closely related to the yeast Saccharomyces cerevisiae, that has been used as a model organism to study fungal developmental biology. It has also been explored as a host for the expression of recombinant proteins. However, although N-glycosylation plays important roles in protein secretion, morphogenesis, and the development of multicellular organisms, the N-glycan structures synthesised by A. gossypii had not been elucidated. In this study, we report the first characterization of A. gossypii N-glycans and provide valuable insights into their biosynthetic pathway. By combined matrix-assisted laser desorption-ionization time-of-flight (MALDI-TOF) mass spectrometry profiling and nuclear magnetic resonance (NMR) spectroscopy we determined that the A. gossypii secreted N-glycome is characterized by high-mannose type structures in the range Man4–18GlcNAc2, mostly containing neutral core-type N-glycans with 8–10 mannoses. Cultivation in defined minimal media induced the production of acidic mannosylphosphorylated N-glycans, generally more elongated than the neutral N-glycans. Truncated neutral N-glycan structures similar to those found in other filamentous fungi (Man4–7GlcNAc2) were detected, suggesting the possible existence of trimming activity in A. gossypii. Homologs for all of the S. cerevisiae genes known to be involved in the endoplasmatic reticulum and Golgi N-glycan processing were found in the A. gossypii genome. However, processing of N-glycans by A. gossypii differs considerably from that by S. cerevisiae, allowing much shorter N-glycans. Genes for two putative N-glycan processing enzymes were identified, that did not have homologs in S. cerevisiae. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013 2013-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/27523 |
url |
http://hdl.handle.net/1822/27523 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0008-6215 10.1016/j.carres.2013.08.015 24056010 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Pergamon Press Ltd. |
publisher.none.fl_str_mv |
Elsevier Pergamon Press Ltd. |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799132640281886720 |