Developing tools for studying the regulation of Ascl1 transcriptional activity by multisite phosphorylation
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/36350 |
Resumo: | Proneural transcription factors (TFs) of the bHLH family, such as Ascl1, are master regulators of vertebrate neurogenesis, being both necessary and sufficient to promote a full program of neuronal differentiation. Ascl1 expression is restricted to multipotent neural stem (NS) cells and intermediate, neuronal committed, progenitors along the anterior/posterior axis of the developing brain and spinal cord. Ascl1 acts by promoting sequentially the proliferation and differentiation of neural stem/progenitor cells through activation of distinct sets of target genes, directly regulating multiple stages of neurogenesis. According to the current view, low Ascl1 activity promotes (and is compatible) with cell proliferation, whereas increased activity results in neuronal differentiation and cell cycle exit. Multisite phosphorylation of Ascl1 at six serine/proline (SP) sites outside its DNA-binding domain has been proposed as a major mechanism for reducing the activity of Ascl1 in proliferating progenitors. Ascl1 activity was shown to depend on the total number of phospho-residues, regardless of their position, a mechanism that is described by a “rheostat-like model”. The number of negatively charged phospho-residues modulates a protein electrostatic potential, a major determinant of TF-chromatin interactions in different cellular contexts. Nevertheless, the mechanisms whereby multisite-phosphorylation impacts how Ascl1 interacts with mitotic chromatin during cell division, or how it navigates the interphase genome searching for its target genes, remain unexplored. The goal of this work was to develop a set of tools for studying a major question: how changes in the phosphorylation status impact the dynamics of Ascl1 interactions with the genome. Here, we describe the generation of a cellular model that allows tracking of a neurogenic division, by labelling young neurons that express the pan-neuronal marker Doublecortin (DCX) with a fluorescent reporter, to be used when comparing Ascl1-chromatin interactions in proliferating versus differentiating progenitors. Also, we present our efforts in using CRISPR/Cas9 to generate NS cell models expressing phospho-mutant derivatives of Ascl1. Preliminary results suggest increased nuclear concentration of an Ascl1 derivative with alanine substitutions in all six SP sites, in line with its previously characterized increased neurogenic activity. While several studies have looked at Ascl1 chromatin interactions, by live cell- imaging or chromatin immunoprecipitation (CHIP), no studies have so far looked at Ascl1 properties at a single molecule level. Here we combined Total Internal Reflection Fluorescence (TIRF) microscopy with Highly Inclined Laminated Optical sheet (HILO) illumination, to establish Single-Molecule Tracking as an experimental approach to survey Ascl1 dynamics in live cells. To this end, we used genome editing to generate NS cells expressing transcriptionally active Halo-tagged Ascl1. Using this emerging technique to study TF kinetic properties, we were able to preliminarily distinguish Ascl1 subpopulations according to different binding dynamics. |
id |
RCAP_12eeee80e38451e707898a62513127af |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/36350 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Developing tools for studying the regulation of Ascl1 transcriptional activity by multisite phosphorylationAscl1Electrostatic interactionsNeuronal differentiationPhosphorylationSingle Molecule Tracking (SMT)Transcription factorProneural transcription factors (TFs) of the bHLH family, such as Ascl1, are master regulators of vertebrate neurogenesis, being both necessary and sufficient to promote a full program of neuronal differentiation. Ascl1 expression is restricted to multipotent neural stem (NS) cells and intermediate, neuronal committed, progenitors along the anterior/posterior axis of the developing brain and spinal cord. Ascl1 acts by promoting sequentially the proliferation and differentiation of neural stem/progenitor cells through activation of distinct sets of target genes, directly regulating multiple stages of neurogenesis. According to the current view, low Ascl1 activity promotes (and is compatible) with cell proliferation, whereas increased activity results in neuronal differentiation and cell cycle exit. Multisite phosphorylation of Ascl1 at six serine/proline (SP) sites outside its DNA-binding domain has been proposed as a major mechanism for reducing the activity of Ascl1 in proliferating progenitors. Ascl1 activity was shown to depend on the total number of phospho-residues, regardless of their position, a mechanism that is described by a “rheostat-like model”. The number of negatively charged phospho-residues modulates a protein electrostatic potential, a major determinant of TF-chromatin interactions in different cellular contexts. Nevertheless, the mechanisms whereby multisite-phosphorylation impacts how Ascl1 interacts with mitotic chromatin during cell division, or how it navigates the interphase genome searching for its target genes, remain unexplored. The goal of this work was to develop a set of tools for studying a major question: how changes in the phosphorylation status impact the dynamics of Ascl1 interactions with the genome. Here, we describe the generation of a cellular model that allows tracking of a neurogenic division, by labelling young neurons that express the pan-neuronal marker Doublecortin (DCX) with a fluorescent reporter, to be used when comparing Ascl1-chromatin interactions in proliferating versus differentiating progenitors. Also, we present our efforts in using CRISPR/Cas9 to generate NS cell models expressing phospho-mutant derivatives of Ascl1. Preliminary results suggest increased nuclear concentration of an Ascl1 derivative with alanine substitutions in all six SP sites, in line with its previously characterized increased neurogenic activity. While several studies have looked at Ascl1 chromatin interactions, by live cell- imaging or chromatin immunoprecipitation (CHIP), no studies have so far looked at Ascl1 properties at a single molecule level. Here we combined Total Internal Reflection Fluorescence (TIRF) microscopy with Highly Inclined Laminated Optical sheet (HILO) illumination, to establish Single-Molecule Tracking as an experimental approach to survey Ascl1 dynamics in live cells. To this end, we used genome editing to generate NS cells expressing transcriptionally active Halo-tagged Ascl1. Using this emerging technique to study TF kinetic properties, we were able to preliminarily distinguish Ascl1 subpopulations according to different binding dynamics.Os fatores de transcrição (FTs) proneurais da família bHLH, como o Ascl1, são importantes reguladores da neurogénese em vertebrados, sendo necessários e suficientes para implementar um programa completo de diferenciação neuronal. A expressão do Ascl1 é restrita às células estaminais neurais multipotentes e aos progenitores neuronais intermediários, ao longo do eixo anterior/posterior do cérebro e da medula espinal durante o desenvolvimento. O Ascl1 atua promovendo sequencialmente a proliferação e a diferenciação de células estaminais/progenitoras através da ativação de conjuntos distintos de genes alvo, regulando diretamente múltiplas fases da neurogénese. De acordo com o modelo atual, uma baixa atividade de Ascl1 promove (e é compatível) com a proliferação celular, enquanto que uma maior atividade resulta na diferenciação neuronal e na saída do ciclo celular. A fosforilação múltipla de seis resíduos de serina/prolina (SP) fora do seu domínio de ligação ao DNA, foi proposta como um mecanismo importante para reduzir a atividade do Ascl1 em progenitores que se encontram em proliferação. Foi demonstrado que a atividade do Ascl1 depende do número total de fosfo-resíduos, independentemente da sua posição, um mecanismo que é descrito por um funcionamento semelhante ao de um reóstato. O número de fosfo-resíduos carregados negativamente modula o potencial electroestático das proteínas, um dos principais determinantes das interações dos FTs com a cromatina. No entanto, os mecanismos através dos quais a fosforilação tem impacto na forma como o Ascl1 interage com a cromatina mitótica durante a divisão celular, ou como navega o genoma em interfase á procura dos seus genes alvo, permanecem inexplorados. O objetivo deste trabalho, foi desenvolver um conjunto de ferramentas para responder á nossa questão principal: como é que mudanças no estado da fosforilação afetam a dinâmica das interações do Ascl1 com o genoma. Aqui, descrevemos a geração de um modelo celular que permite rastrear uma divisão neurogénica através da marcação de novos neurónios que expressam o marcador pan-neuronal Doublecortin (DCX) com um repórter fluorescente, para ser usado na comparação de interações do Ascl1 com a cromatina em progenitores em condições de proliferação versus diferenciação. Também apresentamos os nossos esforços na utilização do CRISPR/Cas9 para gerar modelos de células neuronais estaminais que expressam derivados fosfo- mutantes de Ascl1. Resultados preliminares sugerem um aumento da concentração nuclear do Ascl1 com substituições de serina para alanina nos seis locais descritos pelo modelo do “reóstato”, indo de acordo ao aumento previamente reportado da atividade neurogénica deste mutante. Embora vários estudos tenham analisado as interações do Ascl1 com a cromatina, por microscopia em tempo real ou imunoprecipitação de cromatina (ChIP), nenhum estudo analisou até agora as propriedades do Ascl1 ao nível de moléculas individuais (“single-molecule”). Neste estudo, combinámos microscopia de fluorescência de reflexão interna total (TIRF) com a iluminação ótica altamente inclinada (HILO), para estabelecer “Single Molecule Tracking” como uma abordagem experimental para investigar dinâmicas do FT Ascl1 em células vivas. Para este fim, utilizámos técnicas de edição do genoma para gerar células NS que expressam Ascl1-HaloTag. Usando esta técnica emergente para estudar as propriedades cinéticas de FTs, os estudos preliminares realizados permitiram visualizar subpopulações de Ascl1 com diferentes dinâmicas de ligação à cromatina.2024-12-29T00:00:00Z2022-12-19T00:00:00Z2022-12-19info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/36350engSilva, José Miguel Vieirainfo:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:10:10Zoai:ria.ua.pt:10773/36350Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:07:13.026641Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Developing tools for studying the regulation of Ascl1 transcriptional activity by multisite phosphorylation |
title |
Developing tools for studying the regulation of Ascl1 transcriptional activity by multisite phosphorylation |
spellingShingle |
Developing tools for studying the regulation of Ascl1 transcriptional activity by multisite phosphorylation Silva, José Miguel Vieira Ascl1 Electrostatic interactions Neuronal differentiation Phosphorylation Single Molecule Tracking (SMT) Transcription factor |
title_short |
Developing tools for studying the regulation of Ascl1 transcriptional activity by multisite phosphorylation |
title_full |
Developing tools for studying the regulation of Ascl1 transcriptional activity by multisite phosphorylation |
title_fullStr |
Developing tools for studying the regulation of Ascl1 transcriptional activity by multisite phosphorylation |
title_full_unstemmed |
Developing tools for studying the regulation of Ascl1 transcriptional activity by multisite phosphorylation |
title_sort |
Developing tools for studying the regulation of Ascl1 transcriptional activity by multisite phosphorylation |
author |
Silva, José Miguel Vieira |
author_facet |
Silva, José Miguel Vieira |
author_role |
author |
dc.contributor.author.fl_str_mv |
Silva, José Miguel Vieira |
dc.subject.por.fl_str_mv |
Ascl1 Electrostatic interactions Neuronal differentiation Phosphorylation Single Molecule Tracking (SMT) Transcription factor |
topic |
Ascl1 Electrostatic interactions Neuronal differentiation Phosphorylation Single Molecule Tracking (SMT) Transcription factor |
description |
Proneural transcription factors (TFs) of the bHLH family, such as Ascl1, are master regulators of vertebrate neurogenesis, being both necessary and sufficient to promote a full program of neuronal differentiation. Ascl1 expression is restricted to multipotent neural stem (NS) cells and intermediate, neuronal committed, progenitors along the anterior/posterior axis of the developing brain and spinal cord. Ascl1 acts by promoting sequentially the proliferation and differentiation of neural stem/progenitor cells through activation of distinct sets of target genes, directly regulating multiple stages of neurogenesis. According to the current view, low Ascl1 activity promotes (and is compatible) with cell proliferation, whereas increased activity results in neuronal differentiation and cell cycle exit. Multisite phosphorylation of Ascl1 at six serine/proline (SP) sites outside its DNA-binding domain has been proposed as a major mechanism for reducing the activity of Ascl1 in proliferating progenitors. Ascl1 activity was shown to depend on the total number of phospho-residues, regardless of their position, a mechanism that is described by a “rheostat-like model”. The number of negatively charged phospho-residues modulates a protein electrostatic potential, a major determinant of TF-chromatin interactions in different cellular contexts. Nevertheless, the mechanisms whereby multisite-phosphorylation impacts how Ascl1 interacts with mitotic chromatin during cell division, or how it navigates the interphase genome searching for its target genes, remain unexplored. The goal of this work was to develop a set of tools for studying a major question: how changes in the phosphorylation status impact the dynamics of Ascl1 interactions with the genome. Here, we describe the generation of a cellular model that allows tracking of a neurogenic division, by labelling young neurons that express the pan-neuronal marker Doublecortin (DCX) with a fluorescent reporter, to be used when comparing Ascl1-chromatin interactions in proliferating versus differentiating progenitors. Also, we present our efforts in using CRISPR/Cas9 to generate NS cell models expressing phospho-mutant derivatives of Ascl1. Preliminary results suggest increased nuclear concentration of an Ascl1 derivative with alanine substitutions in all six SP sites, in line with its previously characterized increased neurogenic activity. While several studies have looked at Ascl1 chromatin interactions, by live cell- imaging or chromatin immunoprecipitation (CHIP), no studies have so far looked at Ascl1 properties at a single molecule level. Here we combined Total Internal Reflection Fluorescence (TIRF) microscopy with Highly Inclined Laminated Optical sheet (HILO) illumination, to establish Single-Molecule Tracking as an experimental approach to survey Ascl1 dynamics in live cells. To this end, we used genome editing to generate NS cells expressing transcriptionally active Halo-tagged Ascl1. Using this emerging technique to study TF kinetic properties, we were able to preliminarily distinguish Ascl1 subpopulations according to different binding dynamics. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-12-19T00:00:00Z 2022-12-19 2024-12-29T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/36350 |
url |
http://hdl.handle.net/10773/36350 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
eu_rights_str_mv |
embargoedAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137727380193280 |