Dynamic Content-based Indexing in Mobile Edge Networks
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/160377 |
Resumo: | As the number of technological devices continues to grow exponentially, the demand for edge computing has become increasingly urgent. This is due to the need for efficient and rapid data processing, especially in scenarios where latency and bandwidth constraints prevent the use of cloud-based solutions. In this context, we present in this work a study above face recognition and clustering algorithms to sustain the reliability to introduce them in a Face-Based Indexing system, built on top of an ecosystem for sharing data and computation named EdgeGarden. Our study relies on the future implementation of a Face-Based Indexing system with an efficient and scalable solution for face recognition and indexing at the edge, enabling real-time processing of facial data and reducing the burden on centralized systems. We believe that this system has the potential to significantly improve the performance and efficiency of edge computing systems, paving the way for the development of more so- phisticated applications in the future. A study among several face detection and extraction models led to the implementa- tion of the HaarCascade face detection model and the ArcFace with 50-Residual Neural Network, a Convolutional Neural Network (CNN)-based model for face feature extrac- tion. For the indexing phase, we compare and analyze the performance of two clustering density-based algorithms, DBSCAN and Denstream. This study shows that the Den- stream algorithm performs better in terms of computational efficiency, however, in terms of accuracy it did not remark as good as DBSCAN. Therefore this study essentially highlights the selection of face detection and feature extraction models focusing on the creation of a Face-Based Indexing system and the evidence that it works using a static data clustering algorithm as DBSCAN. |
id |
RCAP_12f46e73860d27288549b3f99816b5b2 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/160377 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Dynamic Content-based Indexing in Mobile Edge NetworksIndexingEdge ComputingMobile ComputingFacial RecognitionClsuteringDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e InformáticaAs the number of technological devices continues to grow exponentially, the demand for edge computing has become increasingly urgent. This is due to the need for efficient and rapid data processing, especially in scenarios where latency and bandwidth constraints prevent the use of cloud-based solutions. In this context, we present in this work a study above face recognition and clustering algorithms to sustain the reliability to introduce them in a Face-Based Indexing system, built on top of an ecosystem for sharing data and computation named EdgeGarden. Our study relies on the future implementation of a Face-Based Indexing system with an efficient and scalable solution for face recognition and indexing at the edge, enabling real-time processing of facial data and reducing the burden on centralized systems. We believe that this system has the potential to significantly improve the performance and efficiency of edge computing systems, paving the way for the development of more so- phisticated applications in the future. A study among several face detection and extraction models led to the implementa- tion of the HaarCascade face detection model and the ArcFace with 50-Residual Neural Network, a Convolutional Neural Network (CNN)-based model for face feature extrac- tion. For the indexing phase, we compare and analyze the performance of two clustering density-based algorithms, DBSCAN and Denstream. This study shows that the Den- stream algorithm performs better in terms of computational efficiency, however, in terms of accuracy it did not remark as good as DBSCAN. Therefore this study essentially highlights the selection of face detection and feature extraction models focusing on the creation of a Face-Based Indexing system and the evidence that it works using a static data clustering algorithm as DBSCAN.Com o número de dispositivos tecnológicos a crescer exponencialmente, a procura por computação de ponta tornou-se cada vez mais urgente. Isso se deve à necessidade de processamento eficiente e rápido de dados, especialmente em cenários onde as restrições de latência e largura de banda impedem o uso de soluções baseadas em cloud. Neste contexto, apresentamos neste trabalho um estudo sobre algoritmos de reconhecimento e agrupamento de faces para sustentar a confiabilidade de introduzi-los num sistema de indexação baseado em caras, construído sobre um ecossistema de partilha de dados e computação denominado EdgeGarden. O nosso estudo põe em perspectiva uma futura implementação de um sistema de indexação baseado em caras com uma solução eficiente e escalável para reconhecimento facial e indexação na periferia, permitindo o processamento em tempo real de dados faciais e reduzindo a carga em sistemas centralizados. Acreditamos que este sistema tem potencial para melhorar significativamente o desempenho e a eficiência dos sistemas de computação na periferia, abrindo caminho para o desenvolvimento de aplicações mais sofisticadas no futuro. Um estudo entre vários modelos de detecção e extração de caras levou à implemen- tação do modelo de detecção de caras HaarCascade e o ArcFace com Rede Residual Neuronal-50, um modelo baseado em Rede Neuronal Convolucional para extração de características de uma cara. Para a fase de indexação, comparamos e analisamos o desem- penho de dois algoritmos baseados em densidade, DBSCAN e Denstream. Este estudo mostra que o algoritmo Denstream tem um desempenho melhor em termos de eficiência computacional, no entanto, em termos de precisão, não foi tão bom quanto o DBSCAN. Deste modo, este estudo destaca essencialmente a seleção de modelos de detecção e extração de caras com o foco na criação de um sistema de indexação baseado em caras e a evidência de que este funciona usando um algoritmo de agrupamento de dados estáticos como DBSCAN.Marques, NunoPaulino, HervéRUNAlmeida, José Duarte Farinha de2023-11-23T18:17:17Z2023-052023-05-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/160377enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:43:03Zoai:run.unl.pt:10362/160377Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:58:00.676366Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Dynamic Content-based Indexing in Mobile Edge Networks |
title |
Dynamic Content-based Indexing in Mobile Edge Networks |
spellingShingle |
Dynamic Content-based Indexing in Mobile Edge Networks Almeida, José Duarte Farinha de Indexing Edge Computing Mobile Computing Facial Recognition Clsutering Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
title_short |
Dynamic Content-based Indexing in Mobile Edge Networks |
title_full |
Dynamic Content-based Indexing in Mobile Edge Networks |
title_fullStr |
Dynamic Content-based Indexing in Mobile Edge Networks |
title_full_unstemmed |
Dynamic Content-based Indexing in Mobile Edge Networks |
title_sort |
Dynamic Content-based Indexing in Mobile Edge Networks |
author |
Almeida, José Duarte Farinha de |
author_facet |
Almeida, José Duarte Farinha de |
author_role |
author |
dc.contributor.none.fl_str_mv |
Marques, Nuno Paulino, Hervé RUN |
dc.contributor.author.fl_str_mv |
Almeida, José Duarte Farinha de |
dc.subject.por.fl_str_mv |
Indexing Edge Computing Mobile Computing Facial Recognition Clsutering Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
topic |
Indexing Edge Computing Mobile Computing Facial Recognition Clsutering Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
description |
As the number of technological devices continues to grow exponentially, the demand for edge computing has become increasingly urgent. This is due to the need for efficient and rapid data processing, especially in scenarios where latency and bandwidth constraints prevent the use of cloud-based solutions. In this context, we present in this work a study above face recognition and clustering algorithms to sustain the reliability to introduce them in a Face-Based Indexing system, built on top of an ecosystem for sharing data and computation named EdgeGarden. Our study relies on the future implementation of a Face-Based Indexing system with an efficient and scalable solution for face recognition and indexing at the edge, enabling real-time processing of facial data and reducing the burden on centralized systems. We believe that this system has the potential to significantly improve the performance and efficiency of edge computing systems, paving the way for the development of more so- phisticated applications in the future. A study among several face detection and extraction models led to the implementa- tion of the HaarCascade face detection model and the ArcFace with 50-Residual Neural Network, a Convolutional Neural Network (CNN)-based model for face feature extrac- tion. For the indexing phase, we compare and analyze the performance of two clustering density-based algorithms, DBSCAN and Denstream. This study shows that the Den- stream algorithm performs better in terms of computational efficiency, however, in terms of accuracy it did not remark as good as DBSCAN. Therefore this study essentially highlights the selection of face detection and feature extraction models focusing on the creation of a Face-Based Indexing system and the evidence that it works using a static data clustering algorithm as DBSCAN. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-11-23T18:17:17Z 2023-05 2023-05-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/160377 |
url |
http://hdl.handle.net/10362/160377 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138161675206656 |