Dynamic Content-based Indexing in Mobile Edge Networks

Detalhes bibliográficos
Autor(a) principal: Almeida, José Duarte Farinha de
Data de Publicação: 2023
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/160377
Resumo: As the number of technological devices continues to grow exponentially, the demand for edge computing has become increasingly urgent. This is due to the need for efficient and rapid data processing, especially in scenarios where latency and bandwidth constraints prevent the use of cloud-based solutions. In this context, we present in this work a study above face recognition and clustering algorithms to sustain the reliability to introduce them in a Face-Based Indexing system, built on top of an ecosystem for sharing data and computation named EdgeGarden. Our study relies on the future implementation of a Face-Based Indexing system with an efficient and scalable solution for face recognition and indexing at the edge, enabling real-time processing of facial data and reducing the burden on centralized systems. We believe that this system has the potential to significantly improve the performance and efficiency of edge computing systems, paving the way for the development of more so- phisticated applications in the future. A study among several face detection and extraction models led to the implementa- tion of the HaarCascade face detection model and the ArcFace with 50-Residual Neural Network, a Convolutional Neural Network (CNN)-based model for face feature extrac- tion. For the indexing phase, we compare and analyze the performance of two clustering density-based algorithms, DBSCAN and Denstream. This study shows that the Den- stream algorithm performs better in terms of computational efficiency, however, in terms of accuracy it did not remark as good as DBSCAN. Therefore this study essentially highlights the selection of face detection and feature extraction models focusing on the creation of a Face-Based Indexing system and the evidence that it works using a static data clustering algorithm as DBSCAN.
id RCAP_12f46e73860d27288549b3f99816b5b2
oai_identifier_str oai:run.unl.pt:10362/160377
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Dynamic Content-based Indexing in Mobile Edge NetworksIndexingEdge ComputingMobile ComputingFacial RecognitionClsuteringDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e InformáticaAs the number of technological devices continues to grow exponentially, the demand for edge computing has become increasingly urgent. This is due to the need for efficient and rapid data processing, especially in scenarios where latency and bandwidth constraints prevent the use of cloud-based solutions. In this context, we present in this work a study above face recognition and clustering algorithms to sustain the reliability to introduce them in a Face-Based Indexing system, built on top of an ecosystem for sharing data and computation named EdgeGarden. Our study relies on the future implementation of a Face-Based Indexing system with an efficient and scalable solution for face recognition and indexing at the edge, enabling real-time processing of facial data and reducing the burden on centralized systems. We believe that this system has the potential to significantly improve the performance and efficiency of edge computing systems, paving the way for the development of more so- phisticated applications in the future. A study among several face detection and extraction models led to the implementa- tion of the HaarCascade face detection model and the ArcFace with 50-Residual Neural Network, a Convolutional Neural Network (CNN)-based model for face feature extrac- tion. For the indexing phase, we compare and analyze the performance of two clustering density-based algorithms, DBSCAN and Denstream. This study shows that the Den- stream algorithm performs better in terms of computational efficiency, however, in terms of accuracy it did not remark as good as DBSCAN. Therefore this study essentially highlights the selection of face detection and feature extraction models focusing on the creation of a Face-Based Indexing system and the evidence that it works using a static data clustering algorithm as DBSCAN.Com o número de dispositivos tecnológicos a crescer exponencialmente, a procura por computação de ponta tornou-se cada vez mais urgente. Isso se deve à necessidade de processamento eficiente e rápido de dados, especialmente em cenários onde as restrições de latência e largura de banda impedem o uso de soluções baseadas em cloud. Neste contexto, apresentamos neste trabalho um estudo sobre algoritmos de reconhecimento e agrupamento de faces para sustentar a confiabilidade de introduzi-los num sistema de indexação baseado em caras, construído sobre um ecossistema de partilha de dados e computação denominado EdgeGarden. O nosso estudo põe em perspectiva uma futura implementação de um sistema de indexação baseado em caras com uma solução eficiente e escalável para reconhecimento facial e indexação na periferia, permitindo o processamento em tempo real de dados faciais e reduzindo a carga em sistemas centralizados. Acreditamos que este sistema tem potencial para melhorar significativamente o desempenho e a eficiência dos sistemas de computação na periferia, abrindo caminho para o desenvolvimento de aplicações mais sofisticadas no futuro. Um estudo entre vários modelos de detecção e extração de caras levou à implemen- tação do modelo de detecção de caras HaarCascade e o ArcFace com Rede Residual Neuronal-50, um modelo baseado em Rede Neuronal Convolucional para extração de características de uma cara. Para a fase de indexação, comparamos e analisamos o desem- penho de dois algoritmos baseados em densidade, DBSCAN e Denstream. Este estudo mostra que o algoritmo Denstream tem um desempenho melhor em termos de eficiência computacional, no entanto, em termos de precisão, não foi tão bom quanto o DBSCAN. Deste modo, este estudo destaca essencialmente a seleção de modelos de detecção e extração de caras com o foco na criação de um sistema de indexação baseado em caras e a evidência de que este funciona usando um algoritmo de agrupamento de dados estáticos como DBSCAN.Marques, NunoPaulino, HervéRUNAlmeida, José Duarte Farinha de2023-11-23T18:17:17Z2023-052023-05-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/160377enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:43:03Zoai:run.unl.pt:10362/160377Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:58:00.676366Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Dynamic Content-based Indexing in Mobile Edge Networks
title Dynamic Content-based Indexing in Mobile Edge Networks
spellingShingle Dynamic Content-based Indexing in Mobile Edge Networks
Almeida, José Duarte Farinha de
Indexing
Edge Computing
Mobile Computing
Facial Recognition
Clsutering
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
title_short Dynamic Content-based Indexing in Mobile Edge Networks
title_full Dynamic Content-based Indexing in Mobile Edge Networks
title_fullStr Dynamic Content-based Indexing in Mobile Edge Networks
title_full_unstemmed Dynamic Content-based Indexing in Mobile Edge Networks
title_sort Dynamic Content-based Indexing in Mobile Edge Networks
author Almeida, José Duarte Farinha de
author_facet Almeida, José Duarte Farinha de
author_role author
dc.contributor.none.fl_str_mv Marques, Nuno
Paulino, Hervé
RUN
dc.contributor.author.fl_str_mv Almeida, José Duarte Farinha de
dc.subject.por.fl_str_mv Indexing
Edge Computing
Mobile Computing
Facial Recognition
Clsutering
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
topic Indexing
Edge Computing
Mobile Computing
Facial Recognition
Clsutering
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
description As the number of technological devices continues to grow exponentially, the demand for edge computing has become increasingly urgent. This is due to the need for efficient and rapid data processing, especially in scenarios where latency and bandwidth constraints prevent the use of cloud-based solutions. In this context, we present in this work a study above face recognition and clustering algorithms to sustain the reliability to introduce them in a Face-Based Indexing system, built on top of an ecosystem for sharing data and computation named EdgeGarden. Our study relies on the future implementation of a Face-Based Indexing system with an efficient and scalable solution for face recognition and indexing at the edge, enabling real-time processing of facial data and reducing the burden on centralized systems. We believe that this system has the potential to significantly improve the performance and efficiency of edge computing systems, paving the way for the development of more so- phisticated applications in the future. A study among several face detection and extraction models led to the implementa- tion of the HaarCascade face detection model and the ArcFace with 50-Residual Neural Network, a Convolutional Neural Network (CNN)-based model for face feature extrac- tion. For the indexing phase, we compare and analyze the performance of two clustering density-based algorithms, DBSCAN and Denstream. This study shows that the Den- stream algorithm performs better in terms of computational efficiency, however, in terms of accuracy it did not remark as good as DBSCAN. Therefore this study essentially highlights the selection of face detection and feature extraction models focusing on the creation of a Face-Based Indexing system and the evidence that it works using a static data clustering algorithm as DBSCAN.
publishDate 2023
dc.date.none.fl_str_mv 2023-11-23T18:17:17Z
2023-05
2023-05-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/160377
url http://hdl.handle.net/10362/160377
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799138161675206656