A Persistent Publish/Subscribe System for Mobile Edge Computing
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/71124 |
Resumo: | In recent times, we have seen an incredible growth of users adopting mobile devices andwearables, and while the hardware capabilities of these devices have greatly increased year after year, mobile communications still remain a bottleneck for most applications. This is partially caused by the companies’ cloud infrastructure, which effectively represents a large scale communication hub where all kinds of platforms compete with each other for the servers’ processing power and channel throughput. Additionally, wireless technologies used in mobile environments are unreliable, slow and congestion-prone by nature when compared to the wired medium counterpart. To fix the back-and-forth mobile communication overhead, the “Edge” paradigm has been recently introduced with the aim to bring cloud services closer to the customers, by providing an intermediate layer between the end devices and the actual cloud infrastructure, resulting in faster response times. Publish/Subscribe systems, such as Thyme, have also been proposed and proven effective for data dissemination at edge networks, due to the interactions’ loosely coupled nature and scalability. Nonetheless, solely relying on P2P interactions is not feasible in every scenario due to wireless protocols’ range limitations. In this thesis we propose and develop Thyme- Infrastructure, an extension to the Thyme framework, that utilizes available stationary nodes within the edge infrastructure to not only improve the performance of mobile clients within a BSS, by offloading a portion of the requests to be processed by the infrastructure, but also to connect multiple clusters of users within the same venue, with the goal of creating a persistent and global end-to-end storage network. Our experimental results, both in simulated and real-world scenarios, show adequate response times for interactive usage, and low energy consumption, allowing the application to be used in a variety of events without excessive battery drainage. In fact, when compared to the previous version of Thyme, our framework was generally able to improve on all of these metrics. On top of that, we evaluated our system’s latencies against a full-fledged cloud solution and verified that our proposal yielded a considerable speedup across the board. |
id |
RCAP_fe3b7b52be5bc6ccefc6009395f0e9a3 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/71124 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
A Persistent Publish/Subscribe System for Mobile Edge ComputingMobile Edge ComputingInfrastructureAndroidFrameworkDistributed StoragePeer-to-peerDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e InformáticaIn recent times, we have seen an incredible growth of users adopting mobile devices andwearables, and while the hardware capabilities of these devices have greatly increased year after year, mobile communications still remain a bottleneck for most applications. This is partially caused by the companies’ cloud infrastructure, which effectively represents a large scale communication hub where all kinds of platforms compete with each other for the servers’ processing power and channel throughput. Additionally, wireless technologies used in mobile environments are unreliable, slow and congestion-prone by nature when compared to the wired medium counterpart. To fix the back-and-forth mobile communication overhead, the “Edge” paradigm has been recently introduced with the aim to bring cloud services closer to the customers, by providing an intermediate layer between the end devices and the actual cloud infrastructure, resulting in faster response times. Publish/Subscribe systems, such as Thyme, have also been proposed and proven effective for data dissemination at edge networks, due to the interactions’ loosely coupled nature and scalability. Nonetheless, solely relying on P2P interactions is not feasible in every scenario due to wireless protocols’ range limitations. In this thesis we propose and develop Thyme- Infrastructure, an extension to the Thyme framework, that utilizes available stationary nodes within the edge infrastructure to not only improve the performance of mobile clients within a BSS, by offloading a portion of the requests to be processed by the infrastructure, but also to connect multiple clusters of users within the same venue, with the goal of creating a persistent and global end-to-end storage network. Our experimental results, both in simulated and real-world scenarios, show adequate response times for interactive usage, and low energy consumption, allowing the application to be used in a variety of events without excessive battery drainage. In fact, when compared to the previous version of Thyme, our framework was generally able to improve on all of these metrics. On top of that, we evaluated our system’s latencies against a full-fledged cloud solution and verified that our proposal yielded a considerable speedup across the board.Paulino, HervéRUNVieira, Pedro Miguel Lima de Jesus2019-05-29T14:31:15Z2018-1220182018-12-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/71124enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T04:33:36Zoai:run.unl.pt:10362/71124Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:35:11.226374Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
A Persistent Publish/Subscribe System for Mobile Edge Computing |
title |
A Persistent Publish/Subscribe System for Mobile Edge Computing |
spellingShingle |
A Persistent Publish/Subscribe System for Mobile Edge Computing Vieira, Pedro Miguel Lima de Jesus Mobile Edge Computing Infrastructure Android Framework Distributed Storage Peer-to-peer Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
title_short |
A Persistent Publish/Subscribe System for Mobile Edge Computing |
title_full |
A Persistent Publish/Subscribe System for Mobile Edge Computing |
title_fullStr |
A Persistent Publish/Subscribe System for Mobile Edge Computing |
title_full_unstemmed |
A Persistent Publish/Subscribe System for Mobile Edge Computing |
title_sort |
A Persistent Publish/Subscribe System for Mobile Edge Computing |
author |
Vieira, Pedro Miguel Lima de Jesus |
author_facet |
Vieira, Pedro Miguel Lima de Jesus |
author_role |
author |
dc.contributor.none.fl_str_mv |
Paulino, Hervé RUN |
dc.contributor.author.fl_str_mv |
Vieira, Pedro Miguel Lima de Jesus |
dc.subject.por.fl_str_mv |
Mobile Edge Computing Infrastructure Android Framework Distributed Storage Peer-to-peer Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
topic |
Mobile Edge Computing Infrastructure Android Framework Distributed Storage Peer-to-peer Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
description |
In recent times, we have seen an incredible growth of users adopting mobile devices andwearables, and while the hardware capabilities of these devices have greatly increased year after year, mobile communications still remain a bottleneck for most applications. This is partially caused by the companies’ cloud infrastructure, which effectively represents a large scale communication hub where all kinds of platforms compete with each other for the servers’ processing power and channel throughput. Additionally, wireless technologies used in mobile environments are unreliable, slow and congestion-prone by nature when compared to the wired medium counterpart. To fix the back-and-forth mobile communication overhead, the “Edge” paradigm has been recently introduced with the aim to bring cloud services closer to the customers, by providing an intermediate layer between the end devices and the actual cloud infrastructure, resulting in faster response times. Publish/Subscribe systems, such as Thyme, have also been proposed and proven effective for data dissemination at edge networks, due to the interactions’ loosely coupled nature and scalability. Nonetheless, solely relying on P2P interactions is not feasible in every scenario due to wireless protocols’ range limitations. In this thesis we propose and develop Thyme- Infrastructure, an extension to the Thyme framework, that utilizes available stationary nodes within the edge infrastructure to not only improve the performance of mobile clients within a BSS, by offloading a portion of the requests to be processed by the infrastructure, but also to connect multiple clusters of users within the same venue, with the goal of creating a persistent and global end-to-end storage network. Our experimental results, both in simulated and real-world scenarios, show adequate response times for interactive usage, and low energy consumption, allowing the application to be used in a variety of events without excessive battery drainage. In fact, when compared to the previous version of Thyme, our framework was generally able to improve on all of these metrics. On top of that, we evaluated our system’s latencies against a full-fledged cloud solution and verified that our proposal yielded a considerable speedup across the board. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-12 2018 2018-12-01T00:00:00Z 2019-05-29T14:31:15Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/71124 |
url |
http://hdl.handle.net/10362/71124 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137973235613696 |