Sentiment analysis in restaurants on social media reviews: the case of Giethoorn restaurants

Detalhes bibliográficos
Autor(a) principal: Yu Ting
Data de Publicação: 2020
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10071/21906
Resumo: Social media has become a main platform for users to express their opinions and feelings and a vast number of available and valuable data in form of text has been created for researchers and operators to hear the users’ voice in different industries. As a consequence, text mining and sentiment analysis have gained big attention and the supporting business intelligence tools to analyze the unstructured data and interpret it into useful and readable information also have been developed rapidly. The Lexalytics, a text mining artificial intelligence tool, is applied to support to present a research method using data mining in order to suggest how to improve the performance of Zwaantje, a restaurant in a touristic Dutch village, through analyzing the reviews of all the restaurants in the village from the most frequently used social media platforms under the four restaurant quality factors namely food and beverage, service, atmosphere and value. Finding of the research is presented by the key themes extracted by Lexalytics with comparison of the customers’ review sentiment between Zwaantje and the benchmark restaurants set by a specific approach under the abovementioned quality dimensions, in which the F&B and service are most commented by the customers. The outcomes demonstrate that text mining can generate insights from different aspects in the restaurant industry and the proposed approach are valuable to the restaurant management.
id RCAP_13906b95d0ea6edea072cb3286ebbde1
oai_identifier_str oai:repositorio.iscte-iul.pt:10071/21906
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Sentiment analysis in restaurants on social media reviews: the case of Giethoorn restaurantsSocial media reviewsText miningSentiment analysisLexalyticsRestaurant managementGiethoornAnálises na internet e redes sociaisData miningAnálise de “sentimentos”LexalyticsGestão de restaurantesSocial media has become a main platform for users to express their opinions and feelings and a vast number of available and valuable data in form of text has been created for researchers and operators to hear the users’ voice in different industries. As a consequence, text mining and sentiment analysis have gained big attention and the supporting business intelligence tools to analyze the unstructured data and interpret it into useful and readable information also have been developed rapidly. The Lexalytics, a text mining artificial intelligence tool, is applied to support to present a research method using data mining in order to suggest how to improve the performance of Zwaantje, a restaurant in a touristic Dutch village, through analyzing the reviews of all the restaurants in the village from the most frequently used social media platforms under the four restaurant quality factors namely food and beverage, service, atmosphere and value. Finding of the research is presented by the key themes extracted by Lexalytics with comparison of the customers’ review sentiment between Zwaantje and the benchmark restaurants set by a specific approach under the abovementioned quality dimensions, in which the F&B and service are most commented by the customers. The outcomes demonstrate that text mining can generate insights from different aspects in the restaurant industry and the proposed approach are valuable to the restaurant management.A internet e as redes sociais tornaram-se a principal plataforma para os utilizadores expressarem as suas opiniões e “sentimentos”. Um elevado número de dados encontra-se disponível para pesquisadores e operadores conhecerem as ideais dos usuários sobre diferentes sectores. Como consequência, o data mining e a análise de “sentimentos” atingiram um elevado protagonismo, assim como as ferramentas de suporte para analisar os dados não estruturados e interpretá-los em informações úteis e legíveis. O Lexalytics, uma ferramenta de inteligência artificial de data mining, é aplicado como suporte para apresentar um método de pesquisa para sugerir como melhorar o desempenho do “Zwaantje”, um restaurante situado numa vila turística holandesa, por meio da análise das avaliações de todos os restaurantes da vila presentes na internet, tendo como base os quatro factores de qualidade do restaurante, ou seja, comida e bebida, serviço, ambiente e valor. O resultado da pesquisa é apresentado pelos principais temas extraídos pelo Lexalytics, tendo como base a avaliação dos clientes apresentada para o “Zwaantje” face aos restaurantes de referência, consubstanciada numa abordagem específica sob as dimensões de qualidade acima mencionadas, em que a comida, bebida e serviço, são as variáveis mais comentadas pelos clientes. Os resultados demonstram que o data mining pode gerar percepções sobre diferentes aspectos do sector da restauração e a abordagem proposta é valiosa para a gestão dos restaurantes.2021-12-21T00:00:00Z2020-12-21T00:00:00Z2020-12-212020-09info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10071/21906TID:202606546engYu Tinginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-09T17:42:06Zoai:repositorio.iscte-iul.pt:10071/21906Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:19:39.167653Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Sentiment analysis in restaurants on social media reviews: the case of Giethoorn restaurants
title Sentiment analysis in restaurants on social media reviews: the case of Giethoorn restaurants
spellingShingle Sentiment analysis in restaurants on social media reviews: the case of Giethoorn restaurants
Yu Ting
Social media reviews
Text mining
Sentiment analysis
Lexalytics
Restaurant management
Giethoorn
Análises na internet e redes sociais
Data mining
Análise de “sentimentos”
Lexalytics
Gestão de restaurantes
title_short Sentiment analysis in restaurants on social media reviews: the case of Giethoorn restaurants
title_full Sentiment analysis in restaurants on social media reviews: the case of Giethoorn restaurants
title_fullStr Sentiment analysis in restaurants on social media reviews: the case of Giethoorn restaurants
title_full_unstemmed Sentiment analysis in restaurants on social media reviews: the case of Giethoorn restaurants
title_sort Sentiment analysis in restaurants on social media reviews: the case of Giethoorn restaurants
author Yu Ting
author_facet Yu Ting
author_role author
dc.contributor.author.fl_str_mv Yu Ting
dc.subject.por.fl_str_mv Social media reviews
Text mining
Sentiment analysis
Lexalytics
Restaurant management
Giethoorn
Análises na internet e redes sociais
Data mining
Análise de “sentimentos”
Lexalytics
Gestão de restaurantes
topic Social media reviews
Text mining
Sentiment analysis
Lexalytics
Restaurant management
Giethoorn
Análises na internet e redes sociais
Data mining
Análise de “sentimentos”
Lexalytics
Gestão de restaurantes
description Social media has become a main platform for users to express their opinions and feelings and a vast number of available and valuable data in form of text has been created for researchers and operators to hear the users’ voice in different industries. As a consequence, text mining and sentiment analysis have gained big attention and the supporting business intelligence tools to analyze the unstructured data and interpret it into useful and readable information also have been developed rapidly. The Lexalytics, a text mining artificial intelligence tool, is applied to support to present a research method using data mining in order to suggest how to improve the performance of Zwaantje, a restaurant in a touristic Dutch village, through analyzing the reviews of all the restaurants in the village from the most frequently used social media platforms under the four restaurant quality factors namely food and beverage, service, atmosphere and value. Finding of the research is presented by the key themes extracted by Lexalytics with comparison of the customers’ review sentiment between Zwaantje and the benchmark restaurants set by a specific approach under the abovementioned quality dimensions, in which the F&B and service are most commented by the customers. The outcomes demonstrate that text mining can generate insights from different aspects in the restaurant industry and the proposed approach are valuable to the restaurant management.
publishDate 2020
dc.date.none.fl_str_mv 2020-12-21T00:00:00Z
2020-12-21
2020-09
2021-12-21T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10071/21906
TID:202606546
url http://hdl.handle.net/10071/21906
identifier_str_mv TID:202606546
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799134756736073728