Sentiment analysis in restaurants on social media reviews: the case of Giethoorn restaurants
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10071/21906 |
Resumo: | Social media has become a main platform for users to express their opinions and feelings and a vast number of available and valuable data in form of text has been created for researchers and operators to hear the users’ voice in different industries. As a consequence, text mining and sentiment analysis have gained big attention and the supporting business intelligence tools to analyze the unstructured data and interpret it into useful and readable information also have been developed rapidly. The Lexalytics, a text mining artificial intelligence tool, is applied to support to present a research method using data mining in order to suggest how to improve the performance of Zwaantje, a restaurant in a touristic Dutch village, through analyzing the reviews of all the restaurants in the village from the most frequently used social media platforms under the four restaurant quality factors namely food and beverage, service, atmosphere and value. Finding of the research is presented by the key themes extracted by Lexalytics with comparison of the customers’ review sentiment between Zwaantje and the benchmark restaurants set by a specific approach under the abovementioned quality dimensions, in which the F&B and service are most commented by the customers. The outcomes demonstrate that text mining can generate insights from different aspects in the restaurant industry and the proposed approach are valuable to the restaurant management. |
id |
RCAP_13906b95d0ea6edea072cb3286ebbde1 |
---|---|
oai_identifier_str |
oai:repositorio.iscte-iul.pt:10071/21906 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Sentiment analysis in restaurants on social media reviews: the case of Giethoorn restaurantsSocial media reviewsText miningSentiment analysisLexalyticsRestaurant managementGiethoornAnálises na internet e redes sociaisData miningAnálise de “sentimentos”LexalyticsGestão de restaurantesSocial media has become a main platform for users to express their opinions and feelings and a vast number of available and valuable data in form of text has been created for researchers and operators to hear the users’ voice in different industries. As a consequence, text mining and sentiment analysis have gained big attention and the supporting business intelligence tools to analyze the unstructured data and interpret it into useful and readable information also have been developed rapidly. The Lexalytics, a text mining artificial intelligence tool, is applied to support to present a research method using data mining in order to suggest how to improve the performance of Zwaantje, a restaurant in a touristic Dutch village, through analyzing the reviews of all the restaurants in the village from the most frequently used social media platforms under the four restaurant quality factors namely food and beverage, service, atmosphere and value. Finding of the research is presented by the key themes extracted by Lexalytics with comparison of the customers’ review sentiment between Zwaantje and the benchmark restaurants set by a specific approach under the abovementioned quality dimensions, in which the F&B and service are most commented by the customers. The outcomes demonstrate that text mining can generate insights from different aspects in the restaurant industry and the proposed approach are valuable to the restaurant management.A internet e as redes sociais tornaram-se a principal plataforma para os utilizadores expressarem as suas opiniões e “sentimentos”. Um elevado número de dados encontra-se disponível para pesquisadores e operadores conhecerem as ideais dos usuários sobre diferentes sectores. Como consequência, o data mining e a análise de “sentimentos” atingiram um elevado protagonismo, assim como as ferramentas de suporte para analisar os dados não estruturados e interpretá-los em informações úteis e legíveis. O Lexalytics, uma ferramenta de inteligência artificial de data mining, é aplicado como suporte para apresentar um método de pesquisa para sugerir como melhorar o desempenho do “Zwaantje”, um restaurante situado numa vila turística holandesa, por meio da análise das avaliações de todos os restaurantes da vila presentes na internet, tendo como base os quatro factores de qualidade do restaurante, ou seja, comida e bebida, serviço, ambiente e valor. O resultado da pesquisa é apresentado pelos principais temas extraídos pelo Lexalytics, tendo como base a avaliação dos clientes apresentada para o “Zwaantje” face aos restaurantes de referência, consubstanciada numa abordagem específica sob as dimensões de qualidade acima mencionadas, em que a comida, bebida e serviço, são as variáveis mais comentadas pelos clientes. Os resultados demonstram que o data mining pode gerar percepções sobre diferentes aspectos do sector da restauração e a abordagem proposta é valiosa para a gestão dos restaurantes.2021-12-21T00:00:00Z2020-12-21T00:00:00Z2020-12-212020-09info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10071/21906TID:202606546engYu Tinginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-09T17:42:06Zoai:repositorio.iscte-iul.pt:10071/21906Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:19:39.167653Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Sentiment analysis in restaurants on social media reviews: the case of Giethoorn restaurants |
title |
Sentiment analysis in restaurants on social media reviews: the case of Giethoorn restaurants |
spellingShingle |
Sentiment analysis in restaurants on social media reviews: the case of Giethoorn restaurants Yu Ting Social media reviews Text mining Sentiment analysis Lexalytics Restaurant management Giethoorn Análises na internet e redes sociais Data mining Análise de “sentimentos” Lexalytics Gestão de restaurantes |
title_short |
Sentiment analysis in restaurants on social media reviews: the case of Giethoorn restaurants |
title_full |
Sentiment analysis in restaurants on social media reviews: the case of Giethoorn restaurants |
title_fullStr |
Sentiment analysis in restaurants on social media reviews: the case of Giethoorn restaurants |
title_full_unstemmed |
Sentiment analysis in restaurants on social media reviews: the case of Giethoorn restaurants |
title_sort |
Sentiment analysis in restaurants on social media reviews: the case of Giethoorn restaurants |
author |
Yu Ting |
author_facet |
Yu Ting |
author_role |
author |
dc.contributor.author.fl_str_mv |
Yu Ting |
dc.subject.por.fl_str_mv |
Social media reviews Text mining Sentiment analysis Lexalytics Restaurant management Giethoorn Análises na internet e redes sociais Data mining Análise de “sentimentos” Lexalytics Gestão de restaurantes |
topic |
Social media reviews Text mining Sentiment analysis Lexalytics Restaurant management Giethoorn Análises na internet e redes sociais Data mining Análise de “sentimentos” Lexalytics Gestão de restaurantes |
description |
Social media has become a main platform for users to express their opinions and feelings and a vast number of available and valuable data in form of text has been created for researchers and operators to hear the users’ voice in different industries. As a consequence, text mining and sentiment analysis have gained big attention and the supporting business intelligence tools to analyze the unstructured data and interpret it into useful and readable information also have been developed rapidly. The Lexalytics, a text mining artificial intelligence tool, is applied to support to present a research method using data mining in order to suggest how to improve the performance of Zwaantje, a restaurant in a touristic Dutch village, through analyzing the reviews of all the restaurants in the village from the most frequently used social media platforms under the four restaurant quality factors namely food and beverage, service, atmosphere and value. Finding of the research is presented by the key themes extracted by Lexalytics with comparison of the customers’ review sentiment between Zwaantje and the benchmark restaurants set by a specific approach under the abovementioned quality dimensions, in which the F&B and service are most commented by the customers. The outcomes demonstrate that text mining can generate insights from different aspects in the restaurant industry and the proposed approach are valuable to the restaurant management. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-12-21T00:00:00Z 2020-12-21 2020-09 2021-12-21T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10071/21906 TID:202606546 |
url |
http://hdl.handle.net/10071/21906 |
identifier_str_mv |
TID:202606546 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799134756736073728 |