Quasi-Cauchy Regression Modeling for fractiles based on data supported in the unit interval

Detalhes bibliográficos
Autor(a) principal: Oliveira, José Sérgio Casé de
Data de Publicação: 2023
Outros Autores: Ospina, Raydonal, Leiva, Víctor, Figueroa-Zúñiga, Jorge, Castro, Cecília
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://hdl.handle.net/1822/86360
Resumo: A fractile is a location on a probability density function with the associated surface being a proportion of such a density function. The present study introduces a novel methodological approach to modeling data within the continuous unit interval using fractile or quantile regression. This approach has a unique advantage as it allows for a direct interpretation of the response variable in relation to the explanatory variables. The new approach provides robustness against outliers and permits heteroscedasticity to be modeled, making it a tool for analyzing datasets with diverse characteristics. Importantly, our approach does not require assumptions about the distribution of the response variable, offering increased flexibility and applicability across a variety of scenarios. Furthermore, the approach addresses and mitigates criticisms and limitations inherent to existing methodologies, thereby giving an improved framework for data modeling in the unit interval. We validate the effectiveness of the introduced approach with two empirical applications, which highlight its practical utility and superior performance in real-world data settings.
id RCAP_13ec80d9adfdb4054fb33b0bb6ea3071
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/86360
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Quasi-Cauchy Regression Modeling for fractiles based on data supported in the unit intervalBounded dataFractile regressionRobustnessLink functionsStatistical modelingCiências Naturais::MatemáticasEducação de qualidadeA fractile is a location on a probability density function with the associated surface being a proportion of such a density function. The present study introduces a novel methodological approach to modeling data within the continuous unit interval using fractile or quantile regression. This approach has a unique advantage as it allows for a direct interpretation of the response variable in relation to the explanatory variables. The new approach provides robustness against outliers and permits heteroscedasticity to be modeled, making it a tool for analyzing datasets with diverse characteristics. Importantly, our approach does not require assumptions about the distribution of the response variable, offering increased flexibility and applicability across a variety of scenarios. Furthermore, the approach addresses and mitigates criticisms and limitations inherent to existing methodologies, thereby giving an improved framework for data modeling in the unit interval. We validate the effectiveness of the introduced approach with two empirical applications, which highlight its practical utility and superior performance in real-world data settings.This research was partially supported by the National Council for Scientific and Technological Development (CNPq) through the grant 303192/2022-4 (R.O.); by FONDECYT grant number 1200525 (V.L.) from the National Agency for Research and Development (ANID) of the Chilean government under the Ministry of Science, Technology, Knowledge, and Innovation; and by Portuguese funds through the CMAT-Research Centre of Mathematics of University of Minho-within projects UIDB/00013/2020 and UIDP/00013/2020 (C.C.).Multidisciplinary Digital Publishing Institute (MDPI)Universidade do MinhoOliveira, José Sérgio Casé deOspina, RaydonalLeiva, VíctorFigueroa-Zúñiga, JorgeCastro, Cecília2023-09-042023-09-04T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/1822/86360eng2504-311010.3390/fractalfract7090667667https://www.mdpi.com/2504-3110/7/9/667info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-09-16T01:17:11Zoai:repositorium.sdum.uminho.pt:1822/86360Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:29:22.637545Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Quasi-Cauchy Regression Modeling for fractiles based on data supported in the unit interval
title Quasi-Cauchy Regression Modeling for fractiles based on data supported in the unit interval
spellingShingle Quasi-Cauchy Regression Modeling for fractiles based on data supported in the unit interval
Oliveira, José Sérgio Casé de
Bounded data
Fractile regression
Robustness
Link functions
Statistical modeling
Ciências Naturais::Matemáticas
Educação de qualidade
title_short Quasi-Cauchy Regression Modeling for fractiles based on data supported in the unit interval
title_full Quasi-Cauchy Regression Modeling for fractiles based on data supported in the unit interval
title_fullStr Quasi-Cauchy Regression Modeling for fractiles based on data supported in the unit interval
title_full_unstemmed Quasi-Cauchy Regression Modeling for fractiles based on data supported in the unit interval
title_sort Quasi-Cauchy Regression Modeling for fractiles based on data supported in the unit interval
author Oliveira, José Sérgio Casé de
author_facet Oliveira, José Sérgio Casé de
Ospina, Raydonal
Leiva, Víctor
Figueroa-Zúñiga, Jorge
Castro, Cecília
author_role author
author2 Ospina, Raydonal
Leiva, Víctor
Figueroa-Zúñiga, Jorge
Castro, Cecília
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Oliveira, José Sérgio Casé de
Ospina, Raydonal
Leiva, Víctor
Figueroa-Zúñiga, Jorge
Castro, Cecília
dc.subject.por.fl_str_mv Bounded data
Fractile regression
Robustness
Link functions
Statistical modeling
Ciências Naturais::Matemáticas
Educação de qualidade
topic Bounded data
Fractile regression
Robustness
Link functions
Statistical modeling
Ciências Naturais::Matemáticas
Educação de qualidade
description A fractile is a location on a probability density function with the associated surface being a proportion of such a density function. The present study introduces a novel methodological approach to modeling data within the continuous unit interval using fractile or quantile regression. This approach has a unique advantage as it allows for a direct interpretation of the response variable in relation to the explanatory variables. The new approach provides robustness against outliers and permits heteroscedasticity to be modeled, making it a tool for analyzing datasets with diverse characteristics. Importantly, our approach does not require assumptions about the distribution of the response variable, offering increased flexibility and applicability across a variety of scenarios. Furthermore, the approach addresses and mitigates criticisms and limitations inherent to existing methodologies, thereby giving an improved framework for data modeling in the unit interval. We validate the effectiveness of the introduced approach with two empirical applications, which highlight its practical utility and superior performance in real-world data settings.
publishDate 2023
dc.date.none.fl_str_mv 2023-09-04
2023-09-04T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/1822/86360
url https://hdl.handle.net/1822/86360
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2504-3110
10.3390/fractalfract7090667
667
https://www.mdpi.com/2504-3110/7/9/667
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Multidisciplinary Digital Publishing Institute (MDPI)
publisher.none.fl_str_mv Multidisciplinary Digital Publishing Institute (MDPI)
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133561808224256