Quasi-Cauchy Regression Modeling for fractiles based on data supported in the unit interval
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://hdl.handle.net/1822/86360 |
Resumo: | A fractile is a location on a probability density function with the associated surface being a proportion of such a density function. The present study introduces a novel methodological approach to modeling data within the continuous unit interval using fractile or quantile regression. This approach has a unique advantage as it allows for a direct interpretation of the response variable in relation to the explanatory variables. The new approach provides robustness against outliers and permits heteroscedasticity to be modeled, making it a tool for analyzing datasets with diverse characteristics. Importantly, our approach does not require assumptions about the distribution of the response variable, offering increased flexibility and applicability across a variety of scenarios. Furthermore, the approach addresses and mitigates criticisms and limitations inherent to existing methodologies, thereby giving an improved framework for data modeling in the unit interval. We validate the effectiveness of the introduced approach with two empirical applications, which highlight its practical utility and superior performance in real-world data settings. |
id |
RCAP_13ec80d9adfdb4054fb33b0bb6ea3071 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/86360 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Quasi-Cauchy Regression Modeling for fractiles based on data supported in the unit intervalBounded dataFractile regressionRobustnessLink functionsStatistical modelingCiências Naturais::MatemáticasEducação de qualidadeA fractile is a location on a probability density function with the associated surface being a proportion of such a density function. The present study introduces a novel methodological approach to modeling data within the continuous unit interval using fractile or quantile regression. This approach has a unique advantage as it allows for a direct interpretation of the response variable in relation to the explanatory variables. The new approach provides robustness against outliers and permits heteroscedasticity to be modeled, making it a tool for analyzing datasets with diverse characteristics. Importantly, our approach does not require assumptions about the distribution of the response variable, offering increased flexibility and applicability across a variety of scenarios. Furthermore, the approach addresses and mitigates criticisms and limitations inherent to existing methodologies, thereby giving an improved framework for data modeling in the unit interval. We validate the effectiveness of the introduced approach with two empirical applications, which highlight its practical utility and superior performance in real-world data settings.This research was partially supported by the National Council for Scientific and Technological Development (CNPq) through the grant 303192/2022-4 (R.O.); by FONDECYT grant number 1200525 (V.L.) from the National Agency for Research and Development (ANID) of the Chilean government under the Ministry of Science, Technology, Knowledge, and Innovation; and by Portuguese funds through the CMAT-Research Centre of Mathematics of University of Minho-within projects UIDB/00013/2020 and UIDP/00013/2020 (C.C.).Multidisciplinary Digital Publishing Institute (MDPI)Universidade do MinhoOliveira, José Sérgio Casé deOspina, RaydonalLeiva, VíctorFigueroa-Zúñiga, JorgeCastro, Cecília2023-09-042023-09-04T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/1822/86360eng2504-311010.3390/fractalfract7090667667https://www.mdpi.com/2504-3110/7/9/667info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-09-16T01:17:11Zoai:repositorium.sdum.uminho.pt:1822/86360Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:29:22.637545Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Quasi-Cauchy Regression Modeling for fractiles based on data supported in the unit interval |
title |
Quasi-Cauchy Regression Modeling for fractiles based on data supported in the unit interval |
spellingShingle |
Quasi-Cauchy Regression Modeling for fractiles based on data supported in the unit interval Oliveira, José Sérgio Casé de Bounded data Fractile regression Robustness Link functions Statistical modeling Ciências Naturais::Matemáticas Educação de qualidade |
title_short |
Quasi-Cauchy Regression Modeling for fractiles based on data supported in the unit interval |
title_full |
Quasi-Cauchy Regression Modeling for fractiles based on data supported in the unit interval |
title_fullStr |
Quasi-Cauchy Regression Modeling for fractiles based on data supported in the unit interval |
title_full_unstemmed |
Quasi-Cauchy Regression Modeling for fractiles based on data supported in the unit interval |
title_sort |
Quasi-Cauchy Regression Modeling for fractiles based on data supported in the unit interval |
author |
Oliveira, José Sérgio Casé de |
author_facet |
Oliveira, José Sérgio Casé de Ospina, Raydonal Leiva, Víctor Figueroa-Zúñiga, Jorge Castro, Cecília |
author_role |
author |
author2 |
Ospina, Raydonal Leiva, Víctor Figueroa-Zúñiga, Jorge Castro, Cecília |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Oliveira, José Sérgio Casé de Ospina, Raydonal Leiva, Víctor Figueroa-Zúñiga, Jorge Castro, Cecília |
dc.subject.por.fl_str_mv |
Bounded data Fractile regression Robustness Link functions Statistical modeling Ciências Naturais::Matemáticas Educação de qualidade |
topic |
Bounded data Fractile regression Robustness Link functions Statistical modeling Ciências Naturais::Matemáticas Educação de qualidade |
description |
A fractile is a location on a probability density function with the associated surface being a proportion of such a density function. The present study introduces a novel methodological approach to modeling data within the continuous unit interval using fractile or quantile regression. This approach has a unique advantage as it allows for a direct interpretation of the response variable in relation to the explanatory variables. The new approach provides robustness against outliers and permits heteroscedasticity to be modeled, making it a tool for analyzing datasets with diverse characteristics. Importantly, our approach does not require assumptions about the distribution of the response variable, offering increased flexibility and applicability across a variety of scenarios. Furthermore, the approach addresses and mitigates criticisms and limitations inherent to existing methodologies, thereby giving an improved framework for data modeling in the unit interval. We validate the effectiveness of the introduced approach with two empirical applications, which highlight its practical utility and superior performance in real-world data settings. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-09-04 2023-09-04T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/1822/86360 |
url |
https://hdl.handle.net/1822/86360 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2504-3110 10.3390/fractalfract7090667 667 https://www.mdpi.com/2504-3110/7/9/667 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute (MDPI) |
publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute (MDPI) |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133561808224256 |