Multiplicity of solutions for a class of quasilinear problems involving the 1-Laplacian operator with critical growth
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1016/j.jde.2021.11.012 http://hdl.handle.net/11449/229915 |
Resumo: | The aim of this paper is to establish two results about multiplicity of solutions to problems involving the 1-Laplacian operator, with nonlinearities with critical growth. To be more specific, we study the following problem [Formula presented] where Ω is a smooth bounded domain in RN, N≥2 and ξ∈{0,1}. Moreover, λ>0, q∈(1,1⁎) and [Formula presented]. The first main result establishes the existence of many rotationally non-equivalent and nonradial solutions by assuming that ξ=1, Ω={x∈RN:r<|x|<r+1}, N≥2, N≠3 and r>0. In the second one, Ω is a smooth bounded domain, ξ=0, and the multiplicity of solutions is proved through an abstract result which involves genus theory for functionals which are sum of a C1 functional with a convex lower semicontinuous functional. |
id |
UNSP_3ad46e61ac1e8f3b8ee7232fd0ef63c9 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/229915 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Multiplicity of solutions for a class of quasilinear problems involving the 1-Laplacian operator with critical growth1-LaplacianFunctions of bounded variationOperatorVariational methodsThe aim of this paper is to establish two results about multiplicity of solutions to problems involving the 1-Laplacian operator, with nonlinearities with critical growth. To be more specific, we study the following problem [Formula presented] where Ω is a smooth bounded domain in RN, N≥2 and ξ∈{0,1}. Moreover, λ>0, q∈(1,1⁎) and [Formula presented]. The first main result establishes the existence of many rotationally non-equivalent and nonradial solutions by assuming that ξ=1, Ω={x∈RN:r<|x|<r+1}, N≥2, N≠3 and r>0. In the second one, Ω is a smooth bounded domain, ξ=0, and the multiplicity of solutions is proved through an abstract result which involves genus theory for functionals which are sum of a C1 functional with a convex lower semicontinuous functional.Fundação de Apoio à Pesquisa do Distrito FederalFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Unidade Acadêmica de Matemática Universidade Federal de Campina GrandeDepartment of Mathematics FSO University of Mohamed IDepartamento de Matemática e Computação Universidade Estadual Paulista (Unesp) Faculdade de Ciências e TecnologiaDepartamento de Matemática e Computação Universidade Estadual Paulista (Unesp) Faculdade de Ciências e TecnologiaFAPESP: 2019/14330-9CNPq: 303788/2018-6CNPq: 304804/2017-7Universidade Federal de Campina GrandeUniversity of Mohamed IUniversidade Estadual Paulista (UNESP)Alves, Claudianor O.Ourraoui, AnassPimenta, Marcos T.O. [UNESP]2022-04-29T08:36:39Z2022-04-29T08:36:39Z2022-01-25info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article545-574http://dx.doi.org/10.1016/j.jde.2021.11.012Journal of Differential Equations, v. 308, p. 545-574.1090-27320022-0396http://hdl.handle.net/11449/22991510.1016/j.jde.2021.11.0122-s2.0-85119435908Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengJournal of Differential Equationsinfo:eu-repo/semantics/openAccess2024-06-19T14:32:05Zoai:repositorio.unesp.br:11449/229915Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T20:23:38.832884Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Multiplicity of solutions for a class of quasilinear problems involving the 1-Laplacian operator with critical growth |
title |
Multiplicity of solutions for a class of quasilinear problems involving the 1-Laplacian operator with critical growth |
spellingShingle |
Multiplicity of solutions for a class of quasilinear problems involving the 1-Laplacian operator with critical growth Alves, Claudianor O. 1-Laplacian Functions of bounded variation Operator Variational methods |
title_short |
Multiplicity of solutions for a class of quasilinear problems involving the 1-Laplacian operator with critical growth |
title_full |
Multiplicity of solutions for a class of quasilinear problems involving the 1-Laplacian operator with critical growth |
title_fullStr |
Multiplicity of solutions for a class of quasilinear problems involving the 1-Laplacian operator with critical growth |
title_full_unstemmed |
Multiplicity of solutions for a class of quasilinear problems involving the 1-Laplacian operator with critical growth |
title_sort |
Multiplicity of solutions for a class of quasilinear problems involving the 1-Laplacian operator with critical growth |
author |
Alves, Claudianor O. |
author_facet |
Alves, Claudianor O. Ourraoui, Anass Pimenta, Marcos T.O. [UNESP] |
author_role |
author |
author2 |
Ourraoui, Anass Pimenta, Marcos T.O. [UNESP] |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade Federal de Campina Grande University of Mohamed I Universidade Estadual Paulista (UNESP) |
dc.contributor.author.fl_str_mv |
Alves, Claudianor O. Ourraoui, Anass Pimenta, Marcos T.O. [UNESP] |
dc.subject.por.fl_str_mv |
1-Laplacian Functions of bounded variation Operator Variational methods |
topic |
1-Laplacian Functions of bounded variation Operator Variational methods |
description |
The aim of this paper is to establish two results about multiplicity of solutions to problems involving the 1-Laplacian operator, with nonlinearities with critical growth. To be more specific, we study the following problem [Formula presented] where Ω is a smooth bounded domain in RN, N≥2 and ξ∈{0,1}. Moreover, λ>0, q∈(1,1⁎) and [Formula presented]. The first main result establishes the existence of many rotationally non-equivalent and nonradial solutions by assuming that ξ=1, Ω={x∈RN:r<|x|<r+1}, N≥2, N≠3 and r>0. In the second one, Ω is a smooth bounded domain, ξ=0, and the multiplicity of solutions is proved through an abstract result which involves genus theory for functionals which are sum of a C1 functional with a convex lower semicontinuous functional. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-04-29T08:36:39Z 2022-04-29T08:36:39Z 2022-01-25 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1016/j.jde.2021.11.012 Journal of Differential Equations, v. 308, p. 545-574. 1090-2732 0022-0396 http://hdl.handle.net/11449/229915 10.1016/j.jde.2021.11.012 2-s2.0-85119435908 |
url |
http://dx.doi.org/10.1016/j.jde.2021.11.012 http://hdl.handle.net/11449/229915 |
identifier_str_mv |
Journal of Differential Equations, v. 308, p. 545-574. 1090-2732 0022-0396 10.1016/j.jde.2021.11.012 2-s2.0-85119435908 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Journal of Differential Equations |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
545-574 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129196474499072 |