Multiplicity of solutions for a class of quasilinear problems involving the 1-Laplacian operator with critical growth

Detalhes bibliográficos
Autor(a) principal: Alves, Claudianor O.
Data de Publicação: 2022
Outros Autores: Ourraoui, Anass, Pimenta, Marcos T.O. [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1016/j.jde.2021.11.012
http://hdl.handle.net/11449/229915
Resumo: The aim of this paper is to establish two results about multiplicity of solutions to problems involving the 1-Laplacian operator, with nonlinearities with critical growth. To be more specific, we study the following problem [Formula presented] where Ω is a smooth bounded domain in RN, N≥2 and ξ∈{0,1}. Moreover, λ>0, q∈(1,1⁎) and [Formula presented]. The first main result establishes the existence of many rotationally non-equivalent and nonradial solutions by assuming that ξ=1, Ω={x∈RN:r<|x|<r+1}, N≥2, N≠3 and r>0. In the second one, Ω is a smooth bounded domain, ξ=0, and the multiplicity of solutions is proved through an abstract result which involves genus theory for functionals which are sum of a C1 functional with a convex lower semicontinuous functional.
id UNSP_3ad46e61ac1e8f3b8ee7232fd0ef63c9
oai_identifier_str oai:repositorio.unesp.br:11449/229915
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Multiplicity of solutions for a class of quasilinear problems involving the 1-Laplacian operator with critical growth1-LaplacianFunctions of bounded variationOperatorVariational methodsThe aim of this paper is to establish two results about multiplicity of solutions to problems involving the 1-Laplacian operator, with nonlinearities with critical growth. To be more specific, we study the following problem [Formula presented] where Ω is a smooth bounded domain in RN, N≥2 and ξ∈{0,1}. Moreover, λ>0, q∈(1,1⁎) and [Formula presented]. The first main result establishes the existence of many rotationally non-equivalent and nonradial solutions by assuming that ξ=1, Ω={x∈RN:r<|x|<r+1}, N≥2, N≠3 and r>0. In the second one, Ω is a smooth bounded domain, ξ=0, and the multiplicity of solutions is proved through an abstract result which involves genus theory for functionals which are sum of a C1 functional with a convex lower semicontinuous functional.Fundação de Apoio à Pesquisa do Distrito FederalFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Unidade Acadêmica de Matemática Universidade Federal de Campina GrandeDepartment of Mathematics FSO University of Mohamed IDepartamento de Matemática e Computação Universidade Estadual Paulista (Unesp) Faculdade de Ciências e TecnologiaDepartamento de Matemática e Computação Universidade Estadual Paulista (Unesp) Faculdade de Ciências e TecnologiaFAPESP: 2019/14330-9CNPq: 303788/2018-6CNPq: 304804/2017-7Universidade Federal de Campina GrandeUniversity of Mohamed IUniversidade Estadual Paulista (UNESP)Alves, Claudianor O.Ourraoui, AnassPimenta, Marcos T.O. [UNESP]2022-04-29T08:36:39Z2022-04-29T08:36:39Z2022-01-25info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article545-574http://dx.doi.org/10.1016/j.jde.2021.11.012Journal of Differential Equations, v. 308, p. 545-574.1090-27320022-0396http://hdl.handle.net/11449/22991510.1016/j.jde.2021.11.0122-s2.0-85119435908Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengJournal of Differential Equationsinfo:eu-repo/semantics/openAccess2024-06-19T14:32:05Zoai:repositorio.unesp.br:11449/229915Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T20:23:38.832884Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Multiplicity of solutions for a class of quasilinear problems involving the 1-Laplacian operator with critical growth
title Multiplicity of solutions for a class of quasilinear problems involving the 1-Laplacian operator with critical growth
spellingShingle Multiplicity of solutions for a class of quasilinear problems involving the 1-Laplacian operator with critical growth
Alves, Claudianor O.
1-Laplacian
Functions of bounded variation
Operator
Variational methods
title_short Multiplicity of solutions for a class of quasilinear problems involving the 1-Laplacian operator with critical growth
title_full Multiplicity of solutions for a class of quasilinear problems involving the 1-Laplacian operator with critical growth
title_fullStr Multiplicity of solutions for a class of quasilinear problems involving the 1-Laplacian operator with critical growth
title_full_unstemmed Multiplicity of solutions for a class of quasilinear problems involving the 1-Laplacian operator with critical growth
title_sort Multiplicity of solutions for a class of quasilinear problems involving the 1-Laplacian operator with critical growth
author Alves, Claudianor O.
author_facet Alves, Claudianor O.
Ourraoui, Anass
Pimenta, Marcos T.O. [UNESP]
author_role author
author2 Ourraoui, Anass
Pimenta, Marcos T.O. [UNESP]
author2_role author
author
dc.contributor.none.fl_str_mv Universidade Federal de Campina Grande
University of Mohamed I
Universidade Estadual Paulista (UNESP)
dc.contributor.author.fl_str_mv Alves, Claudianor O.
Ourraoui, Anass
Pimenta, Marcos T.O. [UNESP]
dc.subject.por.fl_str_mv 1-Laplacian
Functions of bounded variation
Operator
Variational methods
topic 1-Laplacian
Functions of bounded variation
Operator
Variational methods
description The aim of this paper is to establish two results about multiplicity of solutions to problems involving the 1-Laplacian operator, with nonlinearities with critical growth. To be more specific, we study the following problem [Formula presented] where Ω is a smooth bounded domain in RN, N≥2 and ξ∈{0,1}. Moreover, λ>0, q∈(1,1⁎) and [Formula presented]. The first main result establishes the existence of many rotationally non-equivalent and nonradial solutions by assuming that ξ=1, Ω={x∈RN:r<|x|<r+1}, N≥2, N≠3 and r>0. In the second one, Ω is a smooth bounded domain, ξ=0, and the multiplicity of solutions is proved through an abstract result which involves genus theory for functionals which are sum of a C1 functional with a convex lower semicontinuous functional.
publishDate 2022
dc.date.none.fl_str_mv 2022-04-29T08:36:39Z
2022-04-29T08:36:39Z
2022-01-25
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1016/j.jde.2021.11.012
Journal of Differential Equations, v. 308, p. 545-574.
1090-2732
0022-0396
http://hdl.handle.net/11449/229915
10.1016/j.jde.2021.11.012
2-s2.0-85119435908
url http://dx.doi.org/10.1016/j.jde.2021.11.012
http://hdl.handle.net/11449/229915
identifier_str_mv Journal of Differential Equations, v. 308, p. 545-574.
1090-2732
0022-0396
10.1016/j.jde.2021.11.012
2-s2.0-85119435908
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Journal of Differential Equations
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 545-574
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129196474499072