Land Cover Classification Implemented in FPGA
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/87366 |
Resumo: | The main focus of the dissertation is Land Use/Land Cover Classification, implemented in FPGA, taking advantage of its parallelism, improving time between mathematical operations. The classifiers implemented will be Decision Tree and Minimum Distance reviewed in State of the Art Chapter. The results obtained pretend to contribute in fire prevention and fire combat, due to the information they extract about the fields where the implementation is applied to. The region of interest will Sado estuary, with future application to Mação, Santarém, inserted in FORESTER project, that had a lot of its area burnt in 2017 fires. Also, the data acquired from the implementation can help to update the previous land classification of the region. Image processing can be performed in a variety of platforms, such as CPU, GPU and FPGAs, with different advantages and disadvantages for each one. Image processing can be referred as massive data processing data in a visual context, due to its large amount of information per photo. Several studies had been made in accelerate classification techniques in hardware, but not so many have been applied in the same context of this dissertation. The outcome of this work shows the advantages of high data processing in hardware, in time and accuracy aspects. How the classifiers handle the region of study and can right classify it will be seen in this dissertation and the major advantages of accelerating some parts or the full classifier in hardware. The results of implementing the classifiers in hardware, done in the Zynq UltraScale+ MPSoC board, will be compared against the equivalent CPU implementation. |
id |
RCAP_14006ae66d4e22a62719752493634b17 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/87366 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Land Cover Classification Implemented in FPGAAccuracyPerformanceLand Use/Land Cover ClassifierCPUGPUFPGADomínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e InformáticaThe main focus of the dissertation is Land Use/Land Cover Classification, implemented in FPGA, taking advantage of its parallelism, improving time between mathematical operations. The classifiers implemented will be Decision Tree and Minimum Distance reviewed in State of the Art Chapter. The results obtained pretend to contribute in fire prevention and fire combat, due to the information they extract about the fields where the implementation is applied to. The region of interest will Sado estuary, with future application to Mação, Santarém, inserted in FORESTER project, that had a lot of its area burnt in 2017 fires. Also, the data acquired from the implementation can help to update the previous land classification of the region. Image processing can be performed in a variety of platforms, such as CPU, GPU and FPGAs, with different advantages and disadvantages for each one. Image processing can be referred as massive data processing data in a visual context, due to its large amount of information per photo. Several studies had been made in accelerate classification techniques in hardware, but not so many have been applied in the same context of this dissertation. The outcome of this work shows the advantages of high data processing in hardware, in time and accuracy aspects. How the classifiers handle the region of study and can right classify it will be seen in this dissertation and the major advantages of accelerating some parts or the full classifier in hardware. The results of implementing the classifiers in hardware, done in the Zynq UltraScale+ MPSoC board, will be compared against the equivalent CPU implementation.Santos-Tavares, RuiRUNGarcia, Carlos Augusto Costa2019-11-15T16:15:32Z2019-1020192019-10-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/87366enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T04:38:55Zoai:run.unl.pt:10362/87366Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:36:44.328342Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Land Cover Classification Implemented in FPGA |
title |
Land Cover Classification Implemented in FPGA |
spellingShingle |
Land Cover Classification Implemented in FPGA Garcia, Carlos Augusto Costa Accuracy Performance Land Use/Land Cover Classifier CPU GPU FPGA Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
title_short |
Land Cover Classification Implemented in FPGA |
title_full |
Land Cover Classification Implemented in FPGA |
title_fullStr |
Land Cover Classification Implemented in FPGA |
title_full_unstemmed |
Land Cover Classification Implemented in FPGA |
title_sort |
Land Cover Classification Implemented in FPGA |
author |
Garcia, Carlos Augusto Costa |
author_facet |
Garcia, Carlos Augusto Costa |
author_role |
author |
dc.contributor.none.fl_str_mv |
Santos-Tavares, Rui RUN |
dc.contributor.author.fl_str_mv |
Garcia, Carlos Augusto Costa |
dc.subject.por.fl_str_mv |
Accuracy Performance Land Use/Land Cover Classifier CPU GPU FPGA Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
topic |
Accuracy Performance Land Use/Land Cover Classifier CPU GPU FPGA Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
description |
The main focus of the dissertation is Land Use/Land Cover Classification, implemented in FPGA, taking advantage of its parallelism, improving time between mathematical operations. The classifiers implemented will be Decision Tree and Minimum Distance reviewed in State of the Art Chapter. The results obtained pretend to contribute in fire prevention and fire combat, due to the information they extract about the fields where the implementation is applied to. The region of interest will Sado estuary, with future application to Mação, Santarém, inserted in FORESTER project, that had a lot of its area burnt in 2017 fires. Also, the data acquired from the implementation can help to update the previous land classification of the region. Image processing can be performed in a variety of platforms, such as CPU, GPU and FPGAs, with different advantages and disadvantages for each one. Image processing can be referred as massive data processing data in a visual context, due to its large amount of information per photo. Several studies had been made in accelerate classification techniques in hardware, but not so many have been applied in the same context of this dissertation. The outcome of this work shows the advantages of high data processing in hardware, in time and accuracy aspects. How the classifiers handle the region of study and can right classify it will be seen in this dissertation and the major advantages of accelerating some parts or the full classifier in hardware. The results of implementing the classifiers in hardware, done in the Zynq UltraScale+ MPSoC board, will be compared against the equivalent CPU implementation. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-11-15T16:15:32Z 2019-10 2019 2019-10-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/87366 |
url |
http://hdl.handle.net/10362/87366 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137985147437056 |