GLODS: global and local optimization using direct search

Detalhes bibliográficos
Autor(a) principal: Custódio, A. L.
Data de Publicação: 2015
Outros Autores: Madeira, JFA
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.21/5985
Resumo: Locating and identifying points as global minimizers is, in general, a hard and time-consuming task. Difficulties increase in the impossibility of using the derivatives of the functions defining the problem. In this work, we propose a new class of methods suited for global derivative-free constrained optimization. Using direct search of directional type, the algorithm alternates between a search step, where potentially good regions are located, and a poll step where the previously located promising regions are explored. This exploitation is made through the launching of several instances of directional direct searches, one in each of the regions of interest. Differently from a simple multistart strategy, direct searches will merge when sufficiently close. The goal is to end with as many direct searches as the number of local minimizers, which would easily allow locating the global extreme value. We describe the algorithmic structure considered, present the corresponding convergence analysis and report numerical results, showing that the proposed method is competitive with currently commonly used global derivative-free optimization solvers.
id RCAP_14e3448043b6ea8cfdc1447e2de8d2ab
oai_identifier_str oai:repositorio.ipl.pt:10400.21/5985
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling GLODS: global and local optimization using direct searchGlobal optimizationMultistart strategiesDirect-search methodsPattern-search methodsNonsmooth calculusLocating and identifying points as global minimizers is, in general, a hard and time-consuming task. Difficulties increase in the impossibility of using the derivatives of the functions defining the problem. In this work, we propose a new class of methods suited for global derivative-free constrained optimization. Using direct search of directional type, the algorithm alternates between a search step, where potentially good regions are located, and a poll step where the previously located promising regions are explored. This exploitation is made through the launching of several instances of directional direct searches, one in each of the regions of interest. Differently from a simple multistart strategy, direct searches will merge when sufficiently close. The goal is to end with as many direct searches as the number of local minimizers, which would easily allow locating the global extreme value. We describe the algorithmic structure considered, present the corresponding convergence analysis and report numerical results, showing that the proposed method is competitive with currently commonly used global derivative-free optimization solvers.SPRINGERRCIPLCustódio, A. L.Madeira, JFA2016-04-14T16:36:02Z2015-052015-05-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.21/5985engCUSTÓDIO, A. L.; MADEIRA, J. F. A.; - GLODS: global and local optimization using direct search. Journal of Global Optimization. ISSN. 0925-5001. Vol. 62, N.º 1 (2015), pp. 1-28.0925-500110.1007/s10898-014-0224-9metadata only accessinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-08-03T09:50:12Zoai:repositorio.ipl.pt:10400.21/5985Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:15:11.844354Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv GLODS: global and local optimization using direct search
title GLODS: global and local optimization using direct search
spellingShingle GLODS: global and local optimization using direct search
Custódio, A. L.
Global optimization
Multistart strategies
Direct-search methods
Pattern-search methods
Nonsmooth calculus
title_short GLODS: global and local optimization using direct search
title_full GLODS: global and local optimization using direct search
title_fullStr GLODS: global and local optimization using direct search
title_full_unstemmed GLODS: global and local optimization using direct search
title_sort GLODS: global and local optimization using direct search
author Custódio, A. L.
author_facet Custódio, A. L.
Madeira, JFA
author_role author
author2 Madeira, JFA
author2_role author
dc.contributor.none.fl_str_mv RCIPL
dc.contributor.author.fl_str_mv Custódio, A. L.
Madeira, JFA
dc.subject.por.fl_str_mv Global optimization
Multistart strategies
Direct-search methods
Pattern-search methods
Nonsmooth calculus
topic Global optimization
Multistart strategies
Direct-search methods
Pattern-search methods
Nonsmooth calculus
description Locating and identifying points as global minimizers is, in general, a hard and time-consuming task. Difficulties increase in the impossibility of using the derivatives of the functions defining the problem. In this work, we propose a new class of methods suited for global derivative-free constrained optimization. Using direct search of directional type, the algorithm alternates between a search step, where potentially good regions are located, and a poll step where the previously located promising regions are explored. This exploitation is made through the launching of several instances of directional direct searches, one in each of the regions of interest. Differently from a simple multistart strategy, direct searches will merge when sufficiently close. The goal is to end with as many direct searches as the number of local minimizers, which would easily allow locating the global extreme value. We describe the algorithmic structure considered, present the corresponding convergence analysis and report numerical results, showing that the proposed method is competitive with currently commonly used global derivative-free optimization solvers.
publishDate 2015
dc.date.none.fl_str_mv 2015-05
2015-05-01T00:00:00Z
2016-04-14T16:36:02Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.21/5985
url http://hdl.handle.net/10400.21/5985
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv CUSTÓDIO, A. L.; MADEIRA, J. F. A.; - GLODS: global and local optimization using direct search. Journal of Global Optimization. ISSN. 0925-5001. Vol. 62, N.º 1 (2015), pp. 1-28.
0925-5001
10.1007/s10898-014-0224-9
dc.rights.driver.fl_str_mv metadata only access
info:eu-repo/semantics/openAccess
rights_invalid_str_mv metadata only access
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv SPRINGER
publisher.none.fl_str_mv SPRINGER
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133409804550144