GLODS: global and local optimization using direct search
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.21/5985 |
Resumo: | Locating and identifying points as global minimizers is, in general, a hard and time-consuming task. Difficulties increase in the impossibility of using the derivatives of the functions defining the problem. In this work, we propose a new class of methods suited for global derivative-free constrained optimization. Using direct search of directional type, the algorithm alternates between a search step, where potentially good regions are located, and a poll step where the previously located promising regions are explored. This exploitation is made through the launching of several instances of directional direct searches, one in each of the regions of interest. Differently from a simple multistart strategy, direct searches will merge when sufficiently close. The goal is to end with as many direct searches as the number of local minimizers, which would easily allow locating the global extreme value. We describe the algorithmic structure considered, present the corresponding convergence analysis and report numerical results, showing that the proposed method is competitive with currently commonly used global derivative-free optimization solvers. |
id |
RCAP_14e3448043b6ea8cfdc1447e2de8d2ab |
---|---|
oai_identifier_str |
oai:repositorio.ipl.pt:10400.21/5985 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
GLODS: global and local optimization using direct searchGlobal optimizationMultistart strategiesDirect-search methodsPattern-search methodsNonsmooth calculusLocating and identifying points as global minimizers is, in general, a hard and time-consuming task. Difficulties increase in the impossibility of using the derivatives of the functions defining the problem. In this work, we propose a new class of methods suited for global derivative-free constrained optimization. Using direct search of directional type, the algorithm alternates between a search step, where potentially good regions are located, and a poll step where the previously located promising regions are explored. This exploitation is made through the launching of several instances of directional direct searches, one in each of the regions of interest. Differently from a simple multistart strategy, direct searches will merge when sufficiently close. The goal is to end with as many direct searches as the number of local minimizers, which would easily allow locating the global extreme value. We describe the algorithmic structure considered, present the corresponding convergence analysis and report numerical results, showing that the proposed method is competitive with currently commonly used global derivative-free optimization solvers.SPRINGERRCIPLCustódio, A. L.Madeira, JFA2016-04-14T16:36:02Z2015-052015-05-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.21/5985engCUSTÓDIO, A. L.; MADEIRA, J. F. A.; - GLODS: global and local optimization using direct search. Journal of Global Optimization. ISSN. 0925-5001. Vol. 62, N.º 1 (2015), pp. 1-28.0925-500110.1007/s10898-014-0224-9metadata only accessinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-08-03T09:50:12Zoai:repositorio.ipl.pt:10400.21/5985Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:15:11.844354Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
GLODS: global and local optimization using direct search |
title |
GLODS: global and local optimization using direct search |
spellingShingle |
GLODS: global and local optimization using direct search Custódio, A. L. Global optimization Multistart strategies Direct-search methods Pattern-search methods Nonsmooth calculus |
title_short |
GLODS: global and local optimization using direct search |
title_full |
GLODS: global and local optimization using direct search |
title_fullStr |
GLODS: global and local optimization using direct search |
title_full_unstemmed |
GLODS: global and local optimization using direct search |
title_sort |
GLODS: global and local optimization using direct search |
author |
Custódio, A. L. |
author_facet |
Custódio, A. L. Madeira, JFA |
author_role |
author |
author2 |
Madeira, JFA |
author2_role |
author |
dc.contributor.none.fl_str_mv |
RCIPL |
dc.contributor.author.fl_str_mv |
Custódio, A. L. Madeira, JFA |
dc.subject.por.fl_str_mv |
Global optimization Multistart strategies Direct-search methods Pattern-search methods Nonsmooth calculus |
topic |
Global optimization Multistart strategies Direct-search methods Pattern-search methods Nonsmooth calculus |
description |
Locating and identifying points as global minimizers is, in general, a hard and time-consuming task. Difficulties increase in the impossibility of using the derivatives of the functions defining the problem. In this work, we propose a new class of methods suited for global derivative-free constrained optimization. Using direct search of directional type, the algorithm alternates between a search step, where potentially good regions are located, and a poll step where the previously located promising regions are explored. This exploitation is made through the launching of several instances of directional direct searches, one in each of the regions of interest. Differently from a simple multistart strategy, direct searches will merge when sufficiently close. The goal is to end with as many direct searches as the number of local minimizers, which would easily allow locating the global extreme value. We describe the algorithmic structure considered, present the corresponding convergence analysis and report numerical results, showing that the proposed method is competitive with currently commonly used global derivative-free optimization solvers. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-05 2015-05-01T00:00:00Z 2016-04-14T16:36:02Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.21/5985 |
url |
http://hdl.handle.net/10400.21/5985 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
CUSTÓDIO, A. L.; MADEIRA, J. F. A.; - GLODS: global and local optimization using direct search. Journal of Global Optimization. ISSN. 0925-5001. Vol. 62, N.º 1 (2015), pp. 1-28. 0925-5001 10.1007/s10898-014-0224-9 |
dc.rights.driver.fl_str_mv |
metadata only access info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
metadata only access |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
SPRINGER |
publisher.none.fl_str_mv |
SPRINGER |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133409804550144 |