MultiGLODS: global and local multiobjective optimization using direct search

Detalhes bibliográficos
Autor(a) principal: Custódio, A. L.
Data de Publicação: 2018
Outros Autores: F. Aguillar Madeira, José
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.21/8952
Resumo: The optimization ofmultimodal functions is a challenging task, in particular when derivatives are not available for use. Recently, in a directional direct search framework, a clever multistart strategy was proposed for global derivative-free optimization of single objective functions. The goal of the current work is to generalize this approach to the computation of global Pareto fronts for multiobjective multimodal derivative-free optimization problems. The proposed algorithm alternates between initializing new searches, using a multistart strategy, and exploring promising subregions, resorting to directional direct search. Components of the objective function are not aggregated and new points are accepted using the concept of Pareto dominance. The initialized searches are not all conducted until the end, merging when they start to be close to each other. The convergence of the method is analyzed under the common assumptions of directional direct search. Numerical experiments show its ability to generate approximations to the different Pareto fronts of a given problem.
id RCAP_bde37631ef769edb03b57d9bda9d03a4
oai_identifier_str oai:repositorio.ipl.pt:10400.21/8952
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling MultiGLODS: global and local multiobjective optimization using direct searchGlobal optimizationMultiobjective optimizationMultistart strategiesDirect search methodsNonsmooth calculusThe optimization ofmultimodal functions is a challenging task, in particular when derivatives are not available for use. Recently, in a directional direct search framework, a clever multistart strategy was proposed for global derivative-free optimization of single objective functions. The goal of the current work is to generalize this approach to the computation of global Pareto fronts for multiobjective multimodal derivative-free optimization problems. The proposed algorithm alternates between initializing new searches, using a multistart strategy, and exploring promising subregions, resorting to directional direct search. Components of the objective function are not aggregated and new points are accepted using the concept of Pareto dominance. The initialized searches are not all conducted until the end, merging when they start to be close to each other. The convergence of the method is analyzed under the common assumptions of directional direct search. Numerical experiments show its ability to generate approximations to the different Pareto fronts of a given problem.SpringerRCIPLCustódio, A. L.F. Aguillar Madeira, José2018-10-22T09:25:17Z2018-102018-10-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.21/8952engCUSTÓDIO, A. L.; MADEIRA, J. F. A. – MultiGLODS global and local multiobjective optimization using direct search. Journal of Global Optimization. ISSN 0925-5001. Vol. 72, N.º 2 (2018), pp. 323-3450925-5001https://doi.org/10.1007/s10898-018-0618-1metadata only accessinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-08-03T09:57:02Zoai:repositorio.ipl.pt:10400.21/8952Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:17:37.605633Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv MultiGLODS: global and local multiobjective optimization using direct search
title MultiGLODS: global and local multiobjective optimization using direct search
spellingShingle MultiGLODS: global and local multiobjective optimization using direct search
Custódio, A. L.
Global optimization
Multiobjective optimization
Multistart strategies
Direct search methods
Nonsmooth calculus
title_short MultiGLODS: global and local multiobjective optimization using direct search
title_full MultiGLODS: global and local multiobjective optimization using direct search
title_fullStr MultiGLODS: global and local multiobjective optimization using direct search
title_full_unstemmed MultiGLODS: global and local multiobjective optimization using direct search
title_sort MultiGLODS: global and local multiobjective optimization using direct search
author Custódio, A. L.
author_facet Custódio, A. L.
F. Aguillar Madeira, José
author_role author
author2 F. Aguillar Madeira, José
author2_role author
dc.contributor.none.fl_str_mv RCIPL
dc.contributor.author.fl_str_mv Custódio, A. L.
F. Aguillar Madeira, José
dc.subject.por.fl_str_mv Global optimization
Multiobjective optimization
Multistart strategies
Direct search methods
Nonsmooth calculus
topic Global optimization
Multiobjective optimization
Multistart strategies
Direct search methods
Nonsmooth calculus
description The optimization ofmultimodal functions is a challenging task, in particular when derivatives are not available for use. Recently, in a directional direct search framework, a clever multistart strategy was proposed for global derivative-free optimization of single objective functions. The goal of the current work is to generalize this approach to the computation of global Pareto fronts for multiobjective multimodal derivative-free optimization problems. The proposed algorithm alternates between initializing new searches, using a multistart strategy, and exploring promising subregions, resorting to directional direct search. Components of the objective function are not aggregated and new points are accepted using the concept of Pareto dominance. The initialized searches are not all conducted until the end, merging when they start to be close to each other. The convergence of the method is analyzed under the common assumptions of directional direct search. Numerical experiments show its ability to generate approximations to the different Pareto fronts of a given problem.
publishDate 2018
dc.date.none.fl_str_mv 2018-10-22T09:25:17Z
2018-10
2018-10-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.21/8952
url http://hdl.handle.net/10400.21/8952
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv CUSTÓDIO, A. L.; MADEIRA, J. F. A. – MultiGLODS global and local multiobjective optimization using direct search. Journal of Global Optimization. ISSN 0925-5001. Vol. 72, N.º 2 (2018), pp. 323-345
0925-5001
https://doi.org/10.1007/s10898-018-0618-1
dc.rights.driver.fl_str_mv metadata only access
info:eu-repo/semantics/openAccess
rights_invalid_str_mv metadata only access
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133438704353280