A microfluidic deformability assessment of pathological red blood cells flowing in a hyperbolic converging microchannel
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/1822/61869 |
Resumo: | The loss of the red blood cells (RBCs) deformability is related with many human diseases, such as malaria, hereditary spherocytosis, sickle cell disease, or renal diseases. Hence, during the last years, a variety of technologies have been proposed to gain insights into the factors affecting the RBCs deformability and their possible direct association with several blood pathologies. In this work, we present a simple microfluidic tool that provides the assessment of motions and deformations of RBCs of end-stage kidney disease (ESKD) patients, under a well-controlled microenvironment. All of the flow studies were performed within a hyperbolic converging microchannels where single-cell deformability was assessed under a controlled homogeneous extensional flow field. By using a passive microfluidic device, RBCs passing through a hyperbolic-shaped contraction were measured by a high-speed video microscopy system, and the velocities and deformability ratios (DR) calculated. Blood samples from 27 individuals, including seven healthy controls and 20 having ESKD with or without diabetes, were analysed. The obtained data indicates that the proposed device is able to detect changes in DR of the RBCs, allowing for distinguishing the samples from the healthy controls and the patients. Overall, the deformability of ESKD patients with and without diabetes type II is lower in comparison with the RBCs from the healthy controls, with this difference being more evident for the group of ESKD patients with diabetes. RBCs from ESKD patients without diabetes elongate on average 8% less, within the hyperbolic contraction, as compared to healthy controls; whereas, RBCs from ESKD patients with diabetes elongate on average 14% less than the healthy controls. The proposed strategy can be easily transformed into a simple and inexpensive diagnostic microfluidic system to assess blood cells deformability due to the huge progress in image processing and high-speed microvisualization technology. |
id |
RCAP_15a0ca261031d8b28acd6754878fbd6e |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/61869 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
A microfluidic deformability assessment of pathological red blood cells flowing in a hyperbolic converging microchannelBlood on chipsCell deformabilityChronic renal diseaseDiabetesHyperbolic microchannelMicrofluidic devicesRed blood cells (RBCs)Science & TechnologyThe loss of the red blood cells (RBCs) deformability is related with many human diseases, such as malaria, hereditary spherocytosis, sickle cell disease, or renal diseases. Hence, during the last years, a variety of technologies have been proposed to gain insights into the factors affecting the RBCs deformability and their possible direct association with several blood pathologies. In this work, we present a simple microfluidic tool that provides the assessment of motions and deformations of RBCs of end-stage kidney disease (ESKD) patients, under a well-controlled microenvironment. All of the flow studies were performed within a hyperbolic converging microchannels where single-cell deformability was assessed under a controlled homogeneous extensional flow field. By using a passive microfluidic device, RBCs passing through a hyperbolic-shaped contraction were measured by a high-speed video microscopy system, and the velocities and deformability ratios (DR) calculated. Blood samples from 27 individuals, including seven healthy controls and 20 having ESKD with or without diabetes, were analysed. The obtained data indicates that the proposed device is able to detect changes in DR of the RBCs, allowing for distinguishing the samples from the healthy controls and the patients. Overall, the deformability of ESKD patients with and without diabetes type II is lower in comparison with the RBCs from the healthy controls, with this difference being more evident for the group of ESKD patients with diabetes. RBCs from ESKD patients without diabetes elongate on average 8% less, within the hyperbolic contraction, as compared to healthy controls; whereas, RBCs from ESKD patients with diabetes elongate on average 14% less than the healthy controls. The proposed strategy can be easily transformed into a simple and inexpensive diagnostic microfluidic system to assess blood cells deformability due to the huge progress in image processing and high-speed microvisualization technology.Research supported by FCT with the reference projects POCI-01-0145-FEDER-016861 (PTDC/QEQFTT/4287/2014), NORTE-01-0145-FEDER-029394 (PTDC/EMD-EMD/29394/2017), NORTE-01-0145-FEDER030171 (PTDC/EME-SIS/30171/2017), UID/EMS/04077/2019, UID/EEA/04436/2019, UID/EMS/00532/2019, PTDC/SAU-ENB/116929/2010, by FEDER funds through the COMPETE 2020, NORTE2020, PORTUGAL2020— Programa Operacional Competitividade e Internacionalização (POCI) with the reference project POCI-01-0145-FEDER-006941 and by the NORTE-01-0145-FEDER-028178 (PTDC/EEI-EEE/28178/2017) project, funded 85% from Programa Operacional Regional do Norte and 15% from FCT. This study was also supported by FCT/MEC through national funds and cofinanced by FEDER, under the Partnership Agreement PT2020 from UCIBIO (UID/MULTI/04378/2013-POCI/01/0145/FEDER/007728), and North Portugal Regional Coordination and Development Commission (CCDR-N)/NORTE2020/Portugal 2020 (Norte-01-0145-FEDER-000024).Multidisciplinary Digital Publishing InstituteUniversidade do MinhoFaustino, VeraRodrigues, Raquel OliveiraPinho, DianaCosta, ElísioSantos-Silva, AliceMiranda, VascoAmaral, Joana S.Lima, Rui Alberto Madeira Macedo2019-09-252019-09-25T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/61869engFaustino, V.; Rodrigues, R.O.; Pinho, D.; Costa, E.; Santos-Silva, A.; Miranda, V.; Amaral, J.S.; Lima, R. A Microfluidic Deformability Assessment of Pathological Red Blood Cells Flowing in a Hyperbolic Converging Microchannel. Micromachines. 2019, 10, 645.2072-666X10.3390/mi10100645https://www.mdpi.com/2072-666X/10/10/645info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:46:59Zoai:repositorium.sdum.uminho.pt:1822/61869Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:45:03.045233Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
A microfluidic deformability assessment of pathological red blood cells flowing in a hyperbolic converging microchannel |
title |
A microfluidic deformability assessment of pathological red blood cells flowing in a hyperbolic converging microchannel |
spellingShingle |
A microfluidic deformability assessment of pathological red blood cells flowing in a hyperbolic converging microchannel Faustino, Vera Blood on chips Cell deformability Chronic renal disease Diabetes Hyperbolic microchannel Microfluidic devices Red blood cells (RBCs) Science & Technology |
title_short |
A microfluidic deformability assessment of pathological red blood cells flowing in a hyperbolic converging microchannel |
title_full |
A microfluidic deformability assessment of pathological red blood cells flowing in a hyperbolic converging microchannel |
title_fullStr |
A microfluidic deformability assessment of pathological red blood cells flowing in a hyperbolic converging microchannel |
title_full_unstemmed |
A microfluidic deformability assessment of pathological red blood cells flowing in a hyperbolic converging microchannel |
title_sort |
A microfluidic deformability assessment of pathological red blood cells flowing in a hyperbolic converging microchannel |
author |
Faustino, Vera |
author_facet |
Faustino, Vera Rodrigues, Raquel Oliveira Pinho, Diana Costa, Elísio Santos-Silva, Alice Miranda, Vasco Amaral, Joana S. Lima, Rui Alberto Madeira Macedo |
author_role |
author |
author2 |
Rodrigues, Raquel Oliveira Pinho, Diana Costa, Elísio Santos-Silva, Alice Miranda, Vasco Amaral, Joana S. Lima, Rui Alberto Madeira Macedo |
author2_role |
author author author author author author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Faustino, Vera Rodrigues, Raquel Oliveira Pinho, Diana Costa, Elísio Santos-Silva, Alice Miranda, Vasco Amaral, Joana S. Lima, Rui Alberto Madeira Macedo |
dc.subject.por.fl_str_mv |
Blood on chips Cell deformability Chronic renal disease Diabetes Hyperbolic microchannel Microfluidic devices Red blood cells (RBCs) Science & Technology |
topic |
Blood on chips Cell deformability Chronic renal disease Diabetes Hyperbolic microchannel Microfluidic devices Red blood cells (RBCs) Science & Technology |
description |
The loss of the red blood cells (RBCs) deformability is related with many human diseases, such as malaria, hereditary spherocytosis, sickle cell disease, or renal diseases. Hence, during the last years, a variety of technologies have been proposed to gain insights into the factors affecting the RBCs deformability and their possible direct association with several blood pathologies. In this work, we present a simple microfluidic tool that provides the assessment of motions and deformations of RBCs of end-stage kidney disease (ESKD) patients, under a well-controlled microenvironment. All of the flow studies were performed within a hyperbolic converging microchannels where single-cell deformability was assessed under a controlled homogeneous extensional flow field. By using a passive microfluidic device, RBCs passing through a hyperbolic-shaped contraction were measured by a high-speed video microscopy system, and the velocities and deformability ratios (DR) calculated. Blood samples from 27 individuals, including seven healthy controls and 20 having ESKD with or without diabetes, were analysed. The obtained data indicates that the proposed device is able to detect changes in DR of the RBCs, allowing for distinguishing the samples from the healthy controls and the patients. Overall, the deformability of ESKD patients with and without diabetes type II is lower in comparison with the RBCs from the healthy controls, with this difference being more evident for the group of ESKD patients with diabetes. RBCs from ESKD patients without diabetes elongate on average 8% less, within the hyperbolic contraction, as compared to healthy controls; whereas, RBCs from ESKD patients with diabetes elongate on average 14% less than the healthy controls. The proposed strategy can be easily transformed into a simple and inexpensive diagnostic microfluidic system to assess blood cells deformability due to the huge progress in image processing and high-speed microvisualization technology. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-09-25 2019-09-25T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/61869 |
url |
http://hdl.handle.net/1822/61869 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Faustino, V.; Rodrigues, R.O.; Pinho, D.; Costa, E.; Santos-Silva, A.; Miranda, V.; Amaral, J.S.; Lima, R. A Microfluidic Deformability Assessment of Pathological Red Blood Cells Flowing in a Hyperbolic Converging Microchannel. Micromachines. 2019, 10, 645. 2072-666X 10.3390/mi10100645 https://www.mdpi.com/2072-666X/10/10/645 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute |
publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133014048899072 |