WKB Approximation and Krall-Type Orthogonal Polynomials
Autor(a) principal: | |
---|---|
Data de Publicação: | 1998 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10316/7743 https://doi.org/10.1023/A:1006006519197 |
Resumo: | We give a unified approach to the Krall-type polynomials orthogonal withrespect to a positive measure consisting of an absolutely continuous one‘perturbed’ by the addition of one or more Dirac deltafunctions. Some examples studied by different authors are considered from aunique point of view. Also some properties of the Krall-type polynomials arestudied. The three-term recurrence relation is calculated explicitly, aswell as some asymptotic formulas. With special emphasis will be consideredthe second order differential equations that such polynomials satisfy. Theyallow us to obtain the central moments and the WKB approximation of thedistribution of zeros. Some examples coming from quadratic polynomialmappings and tridiagonal periodic matrices are also studied. |
id |
RCAP_15a4287036d62294201b32f7545d81a1 |
---|---|
oai_identifier_str |
oai:estudogeral.uc.pt:10316/7743 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
WKB Approximation and Krall-Type Orthogonal PolynomialsWe give a unified approach to the Krall-type polynomials orthogonal withrespect to a positive measure consisting of an absolutely continuous one‘perturbed’ by the addition of one or more Dirac deltafunctions. Some examples studied by different authors are considered from aunique point of view. Also some properties of the Krall-type polynomials arestudied. The three-term recurrence relation is calculated explicitly, aswell as some asymptotic formulas. With special emphasis will be consideredthe second order differential equations that such polynomials satisfy. Theyallow us to obtain the central moments and the WKB approximation of thedistribution of zeros. Some examples coming from quadratic polynomialmappings and tridiagonal periodic matrices are also studied.1998info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/7743http://hdl.handle.net/10316/7743https://doi.org/10.1023/A:1006006519197engActa Applicandae Mathematicae: An International Survey Journal on Applying Mathematics and Mathematical Applications. 54:1 (1998) 27-58Álvarez-Nodarse, R.Marcellán, F.Petronilho, J.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2020-05-25T09:46:17Zoai:estudogeral.uc.pt:10316/7743Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:00:44.542311Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
WKB Approximation and Krall-Type Orthogonal Polynomials |
title |
WKB Approximation and Krall-Type Orthogonal Polynomials |
spellingShingle |
WKB Approximation and Krall-Type Orthogonal Polynomials Álvarez-Nodarse, R. |
title_short |
WKB Approximation and Krall-Type Orthogonal Polynomials |
title_full |
WKB Approximation and Krall-Type Orthogonal Polynomials |
title_fullStr |
WKB Approximation and Krall-Type Orthogonal Polynomials |
title_full_unstemmed |
WKB Approximation and Krall-Type Orthogonal Polynomials |
title_sort |
WKB Approximation and Krall-Type Orthogonal Polynomials |
author |
Álvarez-Nodarse, R. |
author_facet |
Álvarez-Nodarse, R. Marcellán, F. Petronilho, J. |
author_role |
author |
author2 |
Marcellán, F. Petronilho, J. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Álvarez-Nodarse, R. Marcellán, F. Petronilho, J. |
description |
We give a unified approach to the Krall-type polynomials orthogonal withrespect to a positive measure consisting of an absolutely continuous one‘perturbed’ by the addition of one or more Dirac deltafunctions. Some examples studied by different authors are considered from aunique point of view. Also some properties of the Krall-type polynomials arestudied. The three-term recurrence relation is calculated explicitly, aswell as some asymptotic formulas. With special emphasis will be consideredthe second order differential equations that such polynomials satisfy. Theyallow us to obtain the central moments and the WKB approximation of thedistribution of zeros. Some examples coming from quadratic polynomialmappings and tridiagonal periodic matrices are also studied. |
publishDate |
1998 |
dc.date.none.fl_str_mv |
1998 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10316/7743 http://hdl.handle.net/10316/7743 https://doi.org/10.1023/A:1006006519197 |
url |
http://hdl.handle.net/10316/7743 https://doi.org/10.1023/A:1006006519197 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Acta Applicandae Mathematicae: An International Survey Journal on Applying Mathematics and Mathematical Applications. 54:1 (1998) 27-58 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133897618882560 |